Replies: 1 comment 5 replies
-
Hi @phys-chem , I suggest using the |
Beta Was this translation helpful? Give feedback.
5 replies
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
I need to run NPT simulations but meeting problems in installing torch-scatter. When I use the stress branch, I need torch-scatter for deploying. However, I switch the main branch, it cannot be deployed. It is right? Thank you very much!
I meet this error when using main branch for model trained by stress branch:
RuntimeError: Error(s) in loading state_dict for RescaleOutput:
Missing key(s) in state_dict: "scale_by", "shift_by", "model._empty", "model.func.radial_basis.basis.bessel_weights", "model.func.chemical_embedding.linear.weight", "model.func.chemical_embedding.linear.bias", "model.func.chemical_embedding.linear.output_mask", "model.func.layer0_convnet.equivariant_nonlin.mul.weight", "model.func.layer0_convnet.equivariant_nonlin.mul.output_mask", "model.func.layer0_convnet.conv.linear_1.weight", "model.func.layer0_convnet.conv.linear_1.bias", "model.func.layer0_convnet.conv.linear_1.output_mask", "model.func.layer0_convnet.conv.fc.layer0.weight", "model.func.layer0_convnet.conv.fc.layer1.weight", "model.func.layer0_convnet.conv.fc.layer2.weight", "model.func.layer0_convnet.conv.tp.weight", "model.func.layer0_convnet.conv.tp.output_mask", "model.func.layer0_convnet.conv.linear_2.weight", "model.func.layer0_convnet.conv.linear_2.bias", "model.func.layer0_convnet.conv.linear_2.output_mask", "model.func.layer0_convnet.conv.sc.weight", "model.func.layer0_convnet.conv.sc.output_mask", "model.func.layer1_convnet.equivariant_nonlin.mul.weight", "model.func.layer1_convnet.equivariant_nonlin.mul.output_mask", "model.func.layer1_convnet.conv.linear_1.weight", "model.func.layer1_convnet.conv.linear_1.bias", "model.func.layer1_convnet.conv.linear_1.output_mask", "model.func.layer1_convnet.conv.fc.layer0.weight", "model.func.layer1_convnet.conv.fc.layer1.weight", "model.func.layer1_convnet.conv.fc.layer2.weight", "model.func.layer1_convnet.conv.tp.weight", "model.func.layer1_convnet.conv.tp.output_mask", "model.func.layer1_convnet.conv.tp._compiled_main_left_right._w3j_1_1_1", "model.func.layer1_convnet.conv.tp._compiled_main_left_right._w3j_1_1_2", "model.func.layer1_convnet.conv.tp._compiled_main_left_right._w3j_1_2_1", "model.func.layer1_convnet.conv.tp._compiled_main_left_right._w3j_1_2_2", "model.func.layer1_convnet.conv.tp._compiled_main_left_right._w3j_2_1_1", "model.func.layer1_convnet.conv.tp._compiled_main_left_right._w3j_2_1_2", "model.func.layer1_convnet.conv.tp._compiled_main_left_right._w3j_2_2_1", "model.func.layer1_convnet.conv.tp._compiled_main_left_right._w3j_2_2_2", "model.func.layer1_convnet.conv.linear_2.weight", "model.func.layer1_convnet.conv.linear_2.bias", "model.func.layer1_convnet.conv.linear_2.output_mask", "model.func.layer1_convnet.conv.sc.weight", "model.func.layer1_convnet.conv.sc.output_mask", "model.func.layer2_convnet.equivariant_nonlin.mul.weight", "model.func.layer2_convnet.equivariant_nonlin.mul.output_mask", "model.func.layer2_convnet.conv.linear_1.weight", "model.func.layer2_convnet.conv.linear_1.bias", "model.func.layer2_convnet.conv.linear_1.output_mask", "model.func.layer2_convnet.conv.fc.layer0.weight", "model.func.layer2_convnet.conv.fc.layer1.weight", "model.func.layer2_convnet.conv.fc.layer2.weight", "model.func.layer2_convnet.conv.tp.weight", "model.func.layer2_convnet.conv.tp.output_mask", "model.func.layer2_convnet.conv.tp._compiled_main_left_right._w3j_1_1_1", "model.func.layer2_convnet.conv.tp._compiled_main_left_right._w3j_1_1_2", "model.func.layer2_convnet.conv.tp._compiled_main_left_right._w3j_1_2_1", "model.func.layer2_convnet.conv.tp._compiled_main_left_right._w3j_1_2_2", "model.func.layer2_convnet.conv.tp._compiled_main_left_right._w3j_2_1_1", "model.func.layer2_convnet.conv.tp._compiled_main_left_right._w3j_2_1_2", "model.func.layer2_convnet.conv.tp._compiled_main_left_right._w3j_2_2_1", "model.func.layer2_convnet.conv.tp._compiled_main_left_right._w3j_2_2_2", "model.func.layer2_convnet.conv.linear_2.weight", "model.func.layer2_convnet.conv.linear_2.bias", "model.func.layer2_convnet.conv.linear_2.output_mask", "model.func.layer2_convnet.conv.sc.weight", "model.func.layer2_convnet.conv.sc.output_mask", "model.func.layer3_convnet.equivariant_nonlin.mul.weight", "model.func.layer3_convnet.equivariant_nonlin.mul.output_mask", "model.func.layer3_convnet.conv.linear_1.weight", "model.func.layer3_convnet.conv.linear_1.bias", "model.func.layer3_convnet.conv.linear_1.output_mask", "model.func.layer3_convnet.conv.fc.layer0.weight", "model.func.layer3_convnet.conv.fc.layer1.weight", "model.func.layer3_convnet.conv.fc.layer2.weight", "model.func.layer3_convnet.conv.tp.weight", "model.func.layer3_convnet.conv.tp.output_mask", "model.func.layer3_convnet.conv.tp._compiled_main_left_right._w3j_1_1_1", "model.func.layer3_convnet.conv.tp._compiled_main_left_right._w3j_1_1_2", "model.func.layer3_convnet.conv.tp._compiled_main_left_right._w3j_1_2_1", "model.func.layer3_convnet.conv.tp._compiled_main_left_right._w3j_1_2_2", "model.func.layer3_convnet.conv.tp._compiled_main_left_right._w3j_2_1_1", "model.func.layer3_convnet.conv.tp._compiled_main_left_right._w3j_2_1_2", "model.func.layer3_convnet.conv.tp._compiled_main_left_right._w3j_2_2_1", "model.func.layer3_convnet.conv.tp._compiled_main_left_right._w3j_2_2_2", "model.func.layer3_convnet.conv.linear_2.weight", "model.func.layer3_convnet.conv.linear_2.bias", "model.func.layer3_convnet.conv.linear_2.output_mask", "model.func.layer3_convnet.conv.sc.weight", "model.func.layer3_convnet.conv.sc.output_mask", "model.func.conv_to_output_hidden.linear.weight", "model.func.conv_to_output_hidden.linear.bias", "model.func.conv_to_output_hidden.linear.output_mask", "model.func.output_hidden_to_scalar.linear.weight", "model.func.output_hidden_to_scalar.linear.bias", "model.func.output_hidden_to_scalar.linear.output_mask", "model.func.per_species_rescale.shifts", "model.func.per_species_rescale.scales".
Beta Was this translation helpful? Give feedback.
All reactions