-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathdcservoESP_magencoder_brushless.ino
219 lines (187 loc) · 7.2 KB
/
dcservoESP_magencoder_brushless.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/*
* Miguel Sanchez 2106
Mauro Manco 2016 Porting on ESP8266
This program uses an Arduino Pro Micro variant for a closed-loop control of a DC-motor.
Motor motion is detected by a quadrature encoder.
Two inputs named STEP and DIR allow changing the target position.
Serial port prints current position and target position every second.
Serial input can be used to feed a new location for the servo (no CR LF).
Pins used:
Digital inputs 2 & 3 are connected to the two encoder signals (AB).
Digital input 0 is the STEP input.
Analog input A0 is the DIR input.
Digital outputs 6 & 7 control the direction outputs for the motor (I am using half TB6612FNG here).
Digital output 9 is PWM motor control
Please note PID gains kp, ki, kd need to be tuned to each different setup.
*/
#include <EEPROM.h>
#include <PID_v1.h>
#include <Wire.h> // support for I2C encoder
const int Step = 14;
const int M1=16; // D0
const int M2=5; // D1
const int DIR=4; // D2
const int PWM=0; //D3
byte pos[1000]; int p=0;
double kp=0.001,ki=0,kd=0.0;
double input=0, output=0, setpoint=0;
PID myPID(&input, &output, &setpoint,kp,ki,kd, DIRECT);
volatile long encoder0Pos = 0;
boolean auto1=false, auto2=false,counting=false;
long previousMillis = 0; // will store last time LED was updated
long pos1;
long target1=0; // destination location at any moment
//for motor control ramps 1.4
bool newStep = false;
bool oldStep = false;
bool dir = false;
byte skip=0;
void toggle() {
static int state = 0;
state = !state;
digitalWrite(BUILTIN_LED, state);
}
word readTwoBytes()
{
word retVal = -1;
/* Read Low Byte */
Wire.beginTransmission(0x36);
Wire.write(0x0d);
Wire.endTransmission();
Wire.requestFrom(0x36, 1);
while (Wire.available() == 0);
int low = Wire.read();
/* Read High Byte */
Wire.beginTransmission(0x36);
Wire.write(0x0c);
Wire.endTransmission();
Wire.requestFrom(0x36, 1);
while (Wire.available() == 0);
word high = Wire.read();
high = high << 8;
retVal = high | low;
return retVal;
}
int angle,diff;
double before = 0;
void setup() {
Serial.begin (115200);
pinMode(BUILTIN_LED, OUTPUT);
pinMode(Step, INPUT);
pinMode(PWM, OUTPUT);
pinMode(DIR,OUTPUT);
attachInterrupt(Step, countStep, RISING);
analogWriteFreq(10000); // set PWM to 20Khz
analogWriteRange(255); // set PWM to 255 levels (not sure if more is better)
toggle();
help();
recoverPIDfromEEPROM();
//Setup the pid
myPID.SetMode(AUTOMATIC);
myPID.SetSampleTime(1);
myPID.SetOutputLimits(-255,255);
Wire.begin(12,13); // start I2C driver code D6 & D7
}
void loop() {
angle = readTwoBytes(); //analogRead(A0); // encoder0Pos;
// process encoder rollover
diff = angle - before;
if (diff < -3500) pos1 += 4096;
else if (diff > 3500) pos1 -= 4096;
before = angle;
input = pos1 + angle;
//if(!client) client = server.available();
//input = encoder0Pos;
setpoint=target1;
while(!myPID.Compute()); // wait till PID is actually computed
if(Serial.available()) process_line();
//if(client && client.available()) process_line();
pwmOut(output);
if(auto1) if(millis() % 3000 == 0) target1=random(2000); // that was for self test with no input from main controller
if(auto2) if(millis() % 1000 == 0) printPos();
if(counting && abs(input-target1)<15) counting=false;
if(counting && (skip++ % 5)==0 ) {pos[p]=input; if(p<999) p++; else counting=false;}
}
void pwmOut(int out) {
if(out>=0) digitalWrite(DIR, HIGH); else digitalWrite(DIR, LOW); // control direction pin
analogWrite(PWM,255-abs(out)); // my Nidec Brushless Motor 24H PWM works the other way around
}
void countStep(){ if (digitalRead(DIR)== HIGH) target1--;else target1++;
} // pin A0 represents direction == PF7 en Pro Micro
void process_line() {
char cmd = Serial.read();
if(cmd>'Z') cmd-=32;
switch(cmd) {
case 'P': kp=Serial.parseFloat(); myPID.SetTunings(kp,ki,kd); break;
case 'D': kd=Serial.parseFloat(); myPID.SetTunings(kp,ki,kd); break;
case 'I': ki=Serial.parseFloat(); myPID.SetTunings(kp,ki,kd); break;
case '?': printPos(); break;
case 'X': target1=Serial.parseInt(); counting=true; for(int i=0; i<p; i++) pos[i]=0; p=0; break;
case 'T': auto1 = !auto1; break;
case 'A': auto2 = !auto2; break;
case 'Q': Serial.print("P="); Serial.print(kp); Serial.print(" I="); Serial.print(ki); Serial.print(" D="); Serial.println(kd); break;
case 'H': help(); break;
case 'W': writetoEEPROM(); break;
case 'K': eedump(); break;
case 'R': recoverPIDfromEEPROM() ; break;
case 'S': for(int i=0; i<p; i++) Serial.println(pos[i]); break;
case 'M': pwmOut(Serial.parseInt()); break; // just ignore it unless you disable pwmOut in the main loop
}
// while(Serial.read()!=10); // dump extra characters till LF is seen (you can use CRLF or just LF)
}
void printPos() {
Serial.print(F("Position=")); Serial.print(input); Serial.print(F(" PID_output=")); Serial.print(output); Serial.print(F(" Target=")); Serial.println(setpoint);
}
void help() {
Serial.println(F("\nPID DC motor controller and stepper interface emulator"));
Serial.println(F("by misan - porting cured by Exilaus"));
Serial.println(F("Available serial commands: (lines end with CRLF or LF)"));
Serial.println(F("P123.34 sets proportional term to 123.34"));
Serial.println(F("I123.34 sets integral term to 123.34"));
Serial.println(F("D123.34 sets derivative term to 123.34"));
Serial.println(F("? prints out current encoder, output and setpoint values"));
Serial.println(F("X123 sets the target destination for the motor to 123 encoder pulses"));
Serial.println(F("T will start a sequence of random destinations (between 0 and 2000) every 3 seconds. T again will disable that"));
Serial.println(F("Q will print out the current values of P, I and D parameters"));
Serial.println(F("W will store current values of P, I and D parameters into EEPROM"));
Serial.println(F("H will print this help message again"));
Serial.println(F("A will toggle on/off showing regulator status every second\n"));
}
void writetoEEPROM() { // keep PID set values in EEPROM so they are kept when arduino goes off
eeput(kp,0);
eeput(ki,4);
eeput(kd,8);
double cks=0;
for(int i=0; i<12; i++) cks+=EEPROM.read(i);
eeput(cks,12);
Serial.println("\nPID values stored to EEPROM");
//Serial.println(cks);
}
void recoverPIDfromEEPROM() {
double cks=0;
double cksEE;
for(int i=0; i<12; i++) cks+=EEPROM.read(i);
cksEE=eeget(12);
//Serial.println(cks);
if(cks==cksEE) {
Serial.println(F("*** Found PID values on EEPROM"));
kp=eeget(0);
ki=eeget(4);
kd=eeget(8);
myPID.SetTunings(kp,ki,kd);
}
else Serial.println(F("*** Bad checksum"));
}
void eeput(double value, int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-(
char * addr = (char * ) &value;
for(int i=dir; i<dir+4; i++) EEPROM.write(i,addr[i-dir]);
}
double eeget(int dir) { // Snow Leopard keeps me grounded to 1.0.6 Arduino, so I have to do this :-(
double value;
char * addr = (char * ) &value;
for(int i=dir; i<dir+4; i++) addr[i-dir]=EEPROM.read(i);
return value;
}
void eedump() {
for(int i=0; i<16; i++) { Serial.print(EEPROM.read(i),HEX); Serial.print(" "); }Serial.println();
}