Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ValueError: No available memory for the cache blocks. #25

Open
Stoobiedoo opened this issue Sep 30, 2023 · 1 comment
Open

ValueError: No available memory for the cache blocks. #25

Stoobiedoo opened this issue Sep 30, 2023 · 1 comment

Comments

@Stoobiedoo
Copy link

I'm trying to run this with Docker on windows. Using a 3080 Ti. It runs the installer for a while, maxing out the GPU and then eventually throws an error with this message.

docker run --gpus all -e HF_TOKEN=**** -p 8000:8000 ghcr.io/mistralai/mistral-src/vllm:latest --host 0.0.0.0 --model mistralai/Mistral-7B-v0.1
The HF_TOKEN environment variable set, logging to Hugging Face.
Token will not been saved to git credential helper. Pass add_to_git_credential=True if you want to set the git credential as well.
Token is valid (permission: read).
Your token has been saved to /root/.cache/huggingface/token
Login successful
Downloading (…)lve/main/config.json: 100%|██████████| 571/571 [00:00<00:00, 4.41MB/s]
INFO 09-30 15:27:08 llm_engine.py:72] Initializing an LLM engine with config: model='mistralai/Mistral-7B-v0.1', tokenizer='mistralai/Mistral-7B-v0.1', tokenizer_mode=auto, revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=32768, download_dir=None, load_format=auto, tensor_parallel_size=1, quantization=None, seed=0)
Downloading (…)okenizer_config.json: 100%|██████████| 963/963 [00:00<00:00, 8.18MB/s]
Downloading tokenizer.model: 100%|██████████| 493k/493k [00:00<00:00, 20.1MB/s]
Downloading (…)/main/tokenizer.json: 100%|██████████| 1.80M/1.80M [00:00<00:00, 9.81MB/s]
Downloading (…)in/added_tokens.json: 100%|██████████| 42.0/42.0 [00:00<00:00, 369kB/s]
Downloading (…)cial_tokens_map.json: 100%|██████████| 72.0/72.0 [00:00<00:00, 628kB/s]
Downloading (…)l-00002-of-00002.bin: 100%|██████████| 5.06G/5.06G [03:19<00:00, 25.4MB/s]
Downloading (…)l-00001-of-00002.bin: 100%|██████████| 9.94G/9.94G [05:10<00:00, 32.1MB/s]
INFO 09-30 15:48:32 llm_engine.py:205] # GPU blocks: 0, # CPU blocks: 20480:00, 57.3MB/s]
Traceback (most recent call last):
File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
exec(code, run_globals)
File "/usr/local/lib/python3.10/dist-packages/vllm/entrypoints/openai/api_server.py", line 616, in
engine = AsyncLLMEngine.from_engine_args(engine_args)
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/async_llm_engine.py", line 486, in from_engine_args
engine = cls(engine_args.worker_use_ray,
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/async_llm_engine.py", line 270, in init
self.engine = self._init_engine(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/async_llm_engine.py", line 306, in _init_engine
return engine_class(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 111, in init
self._init_cache()
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 209, in _init_cache
raise ValueError("No available memory for the cache blocks. "
ValueError: No available memory for the cache blocks. Try increasing gpu_memory_utilization when initializing the engine.

Can anyone provide guidance on what to change in the launching command to increase gpu_memory_utilization? Or is that in the docker windows app? I'm more used to running in Linux, but windows has the good GPU for gaming.

@frankiedrake
Copy link

Same here. It worked well some time ago, now it doesn't

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants