-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME
122 lines (83 loc) · 3.42 KB
/
README
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
Steps:
(0) Installation
(1) Prepare satellite imagery into individual tile images
(2) Convert road network map into .graph files
(3) Create tile list
(4) Train a model
(5) Infer roads in a new region
(0) Installation
----------------
These Python packages are required:
* tensorflow-gpu
* fiona
* rtree
(1) Prepare satellite imagery
-----------------------------
Satellite imagery is read from 4096x4096 pixel .png images.
These images form a 2D grid.
The filenames should be like:
imagery/REGION_0_0_sat.png
imagery/REGION_0_1_sat.png
imagery/REGION_1_0_sat.png
imagery/REGION_1_1_sat.png
Each filename is of the format REGION_X_Y_sat.png.
* REGION is a label for one portion of satellite imagery.
You can have multiple regions, like this:
imagery/region1_0_0_sat.png
imagery/region1_0_1_sat.png
imagery/region2_0_0_sat.png
imagery/region2_1_0_sat.png
* X and Y are the coordinates of the image in the grid.
For example, REGION_0_1 should be to the right of REGION_0_0.
Similarly, REGION_1_0 should be below REGION_0_0.
If we concatenate the images like this, the result should be a large coherent image:
REGION_0_0 REGION_0_1
REGION_1_0 REGION_1_1
(2) Convert road network map into .graph files
----------------------------------------------
The road network map must be represented as an undirected graph in a custom text format.
The format has two sections, vertices then edges, which together look like this:
100 200
100 400
100 600
200 400
0 1
1 0
1 2
2 1
1 3
3 1
The first four lines are vertices, while the last six are edges.
Each vertex line has two parts: the X coordinate and the Y coordinate.
These coordinates must be in the imagery coordinate system.
For example, because our images are 4096x4096, the coordinate (8192, 8192) is in
REGION_2_2_sat.png at (0, 0). Similarly, (6000, 1000) is in REGION_1_0_sat.png
at (1904, 1000).
Each edge line has two parts: a source vertex and a destination vertex.
The vertices are referenced by their 0-indexed line number. So "0 1" connects
vertex (100, 200) to vertex (100, 400).
The graph above looks like this:
(100, 200) -- (100, 400) -- (100, 600)
|
(200, 400)
util_shp_to_graph.py converts a shapefile to the graph file format.
However, you still need to convert the longitude-latitude coordinates to pixel coordinates.
There must be one graph file per region, and they must be stored in a folder like this:
graphs/region1.graph
graphs/region2.graph
The filenames (region1 and region2) should correspond to the regions in the imagery filenames.
(3) Create tile list
--------------------
The model training code needs to know which parts of the road network map to train on.
If you want to train the model everywhere where there is map data, then you can run:
$ python util_create_tile_list.py region1,region2 graphs/region1.graph,graphs/region2.graph tile_list.json
(4) Train a model
-----------------
$ mkdir model/ model/model_latest/ model/model_best/
$ python run_m5_point.py model/ imagery/ graphs/ tile_list.json
(5) Infer roads in a new region
-------------------------------
To infer roads in a new region, you need a basemap (also in the .graph file with
coordinates matching the imagery pixels) and the region label for the imagery.
Then just run:
$ python eval_m5_point.py model/model_best/model imagery/ graphs/ tile_list.json REGION basemap.graph