From ed7dcc601a45e7901d7696c210f9d7ce302e6611 Mon Sep 17 00:00:00 2001 From: Matthew Harrison Date: Tue, 23 Apr 2019 12:07:20 -0400 Subject: [PATCH] remove dependency on mpl_toolkits by pirating its 2-d interpolation routine --- midas/rectgrid.py | 244 ++++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 237 insertions(+), 7 deletions(-) diff --git a/midas/rectgrid.py b/midas/rectgrid.py index f9c0aef..6440595 100644 --- a/midas/rectgrid.py +++ b/midas/rectgrid.py @@ -50,6 +50,236 @@ R_earth = 6371.e3 +### +### THE FOLLOWING SUBROUTINES WERE EXTRACTED FROM THE (deprecated) BASEMAP package +### Contact: Jeff Whitaker +### +### BEGIN>> +### +def interp(datain,xin,yin,xout,yout,checkbounds=False,masked=False,order=1): + """ + Interpolate data (``datain``) on a rectilinear grid (with x = ``xin`` + y = ``yin``) to a grid with x = ``xout``, y= ``yout``. + + .. tabularcolumns:: |l|L| + + ============== ==================================================== + Arguments Description + ============== ==================================================== + datain a rank-2 array with 1st dimension corresponding to + y, 2nd dimension x. + xin, yin rank-1 arrays containing x and y of + datain grid in increasing order. + xout, yout rank-2 arrays containing x and y of desired output grid. + ============== ==================================================== + + .. tabularcolumns:: |l|L| + + ============== ==================================================== + Keywords Description + ============== ==================================================== + checkbounds If True, values of xout and yout are checked to see + that they lie within the range specified by xin + and xin. + If False, and xout,yout are outside xin,yin, + interpolated values will be clipped to values on + boundary of input grid (xin,yin) + Default is False. + masked If True, points outside the range of xin and yin + are masked (in a masked array). + If masked is set to a number, then + points outside the range of xin and yin will be + set to that number. Default False. + order 0 for nearest-neighbor interpolation, 1 for + bilinear interpolation, 3 for cublic spline + (default 1). order=3 requires scipy.ndimage. + ============== ==================================================== + + .. note:: + If datain is a masked array and order=1 (bilinear interpolation) is + used, elements of dataout will be masked if any of the four surrounding + points in datain are masked. To avoid this, do the interpolation in two + passes, first with order=1 (producing dataout1), then with order=0 + (producing dataout2). Then replace all the masked values in dataout1 + with the corresponding elements in dataout2 (using numpy.where). + This effectively uses nearest neighbor interpolation if any of the + four surrounding points in datain are masked, and bilinear interpolation + otherwise. + + Returns ``dataout``, the interpolated data on the grid ``xout, yout``. + """ + # xin and yin must be monotonically increasing. + if xin[-1]-xin[0] < 0 or yin[-1]-yin[0] < 0: + raise ValueError('xin and yin must be increasing!') + if xout.shape != yout.shape: + raise ValueError('xout and yout must have same shape!') + # check that xout,yout are + # within region defined by xin,yin. + if checkbounds: + if xout.min() < xin.min() or \ + xout.max() > xin.max() or \ + yout.min() < yin.min() or \ + yout.max() > yin.max(): + raise ValueError('yout or xout outside range of yin or xin') + # compute grid coordinates of output grid. + delx = xin[1:]-xin[0:-1] + dely = yin[1:]-yin[0:-1] + if max(delx)-min(delx) < 1.e-4 and max(dely)-min(dely) < 1.e-4: + # regular input grid. + xcoords = (len(xin)-1)*(xout-xin[0])/(xin[-1]-xin[0]) + ycoords = (len(yin)-1)*(yout-yin[0])/(yin[-1]-yin[0]) + else: + # irregular (but still rectilinear) input grid. + xoutflat = xout.flatten(); youtflat = yout.flatten() + ix = (numpy.searchsorted(xin,xoutflat)-1).tolist() + iy = (numpy.searchsorted(yin,youtflat)-1).tolist() + xoutflat = xoutflat.tolist(); xin = xin.tolist() + youtflat = youtflat.tolist(); yin = yin.tolist() + xcoords = []; ycoords = [] + for n,i in enumerate(ix): + if i < 0: + xcoords.append(-1) # outside of range on xin (lower end) + elif i >= len(xin)-1: + xcoords.append(len(xin)) # outside range on upper end. + else: + xcoords.append(float(i)+(xoutflat[n]-xin[i])/(xin[i+1]-xin[i])) + for m,j in enumerate(iy): + if j < 0: + ycoords.append(-1) # outside of range of yin (on lower end) + elif j >= len(yin)-1: + ycoords.append(len(yin)) # outside range on upper end + else: + ycoords.append(float(j)+(youtflat[m]-yin[j])/(yin[j+1]-yin[j])) + xcoords = numpy.reshape(xcoords,xout.shape) + ycoords = numpy.reshape(ycoords,yout.shape) + # data outside range xin,yin will be clipped to + # values on boundary. + if masked: + xmask = numpy.logical_or(numpy.less(xcoords,0),numpy.greater(xcoords,len(xin)-1)) + ymask = numpy.logical_or(numpy.less(ycoords,0),numpy.greater(ycoords,len(yin)-1)) + xymask = numpy.logical_or(xmask,ymask) + xcoords = numpy.clip(xcoords,0,len(xin)-1) + ycoords = numpy.clip(ycoords,0,len(yin)-1) + # interpolate to output grid using bilinear interpolation. + if order == 1: + xi = xcoords.astype(numpy.int32) + yi = ycoords.astype(numpy.int32) + xip1 = xi+1 + yip1 = yi+1 + xip1 = numpy.clip(xip1,0,len(xin)-1) + yip1 = numpy.clip(yip1,0,len(yin)-1) + delx = xcoords-xi.astype(numpy.float32) + dely = ycoords-yi.astype(numpy.float32) + dataout = (1.-delx)*(1.-dely)*datain[yi,xi] + \ + delx*dely*datain[yip1,xip1] + \ + (1.-delx)*dely*datain[yip1,xi] + \ + delx*(1.-dely)*datain[yi,xip1] + elif order == 0: + xcoordsi = numpy.around(xcoords).astype(numpy.int32) + ycoordsi = numpy.around(ycoords).astype(numpy.int32) + dataout = datain[ycoordsi,xcoordsi] + elif order == 3: + try: + from scipy.ndimage import map_coordinates + except ImportError: + raise ValueError('scipy.ndimage must be installed if order=3') + coords = [ycoords,xcoords] + dataout = map_coordinates(datain,coords,order=3,mode='nearest') + else: + raise ValueError('order keyword must be 0, 1 or 3') + if masked and isinstance(masked,bool): + dataout = ma.masked_array(dataout) + newmask = ma.mask_or(ma.getmask(dataout), xymask) + dataout = ma.masked_array(dataout,mask=newmask) + elif masked and is_scalar(masked): + dataout = numpy.where(xymask,masked,dataout) + return dataout + +def shiftgrid(lon0,datain,lonsin,start=True,cyclic=360.0): + """ + Shift global lat/lon grid east or west. + + .. tabularcolumns:: |l|L| + + ============== ==================================================== + Arguments Description + ============== ==================================================== + lon0 starting longitude for shifted grid + (ending longitude if start=False). lon0 must be on + input grid (within the range of lonsin). + datain original data with longitude the right-most + dimension. + lonsin original longitudes. + ============== ==================================================== + + .. tabularcolumns:: |l|L| + + ============== ==================================================== + Keywords Description + ============== ==================================================== + start if True, lon0 represents the starting longitude + of the new grid. if False, lon0 is the ending + longitude. Default True. + cyclic width of periodic domain (default 360) + ============== ==================================================== + + returns ``dataout,lonsout`` (data and longitudes on shifted grid). + """ + if numpy.fabs(lonsin[-1]-lonsin[0]-cyclic) > 1.e-4: + # Use all data instead of raise ValueError, 'cyclic point not included' + start_idx = 0 + else: + # If cyclic, remove the duplicate point + start_idx = 1 + if lon0 < lonsin[0] or lon0 > lonsin[-1]: + raise ValueError('lon0 outside of range of lonsin') + i0 = numpy.argmin(numpy.fabs(lonsin-lon0)) + i0_shift = len(lonsin)-i0 + if ma.isMA(datain): + dataout = ma.zeros(datain.shape,datain.dtype) + else: + dataout = numpy.zeros(datain.shape,datain.dtype) + if ma.isMA(lonsin): + lonsout = ma.zeros(lonsin.shape,lonsin.dtype) + else: + lonsout = numpy.zeros(lonsin.shape,lonsin.dtype) + if start: + lonsout[0:i0_shift] = lonsin[i0:] + else: + lonsout[0:i0_shift] = lonsin[i0:]-cyclic + dataout[...,0:i0_shift] = datain[...,i0:] + if start: + lonsout[i0_shift:] = lonsin[start_idx:i0+start_idx]+cyclic + else: + lonsout[i0_shift:] = lonsin[start_idx:i0+start_idx] + dataout[...,i0_shift:] = datain[...,start_idx:i0+start_idx] + return dataout,lonsout + +def addcyclic(arrin,lonsin): + """ + ``arrout, lonsout = addcyclic(arrin, lonsin)`` + adds cyclic (wraparound) point in longitude to ``arrin`` and ``lonsin``, + assumes longitude is the right-most dimension of ``arrin``. + """ + nlons = arrin.shape[-1] + newshape = list(arrin.shape) + newshape[-1] += 1 + if ma.isMA(arrin): + arrout = ma.zeros(newshape,arrin.dtype) + else: + arrout = numpy.zeros(newshape,arrin.dtype) + arrout[...,0:nlons] = arrin[:] + arrout[...,nlons] = arrin[...,0] + if ma.isMA(lonsin): + lonsout = ma.zeros(nlons+1,lonsin.dtype) + else: + lonsout = numpy.zeros(nlons+1,lonsin.dtype) + lonsout[0:nlons] = lonsin[:] + lonsout[nlons] = lonsin[-1] + lonsin[1]-lonsin[0] + return arrout,lonsout +### +# <