-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweight_memory.py
114 lines (93 loc) · 3.39 KB
/
weight_memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
import torch.optim as optim
import time
import math
from collections.abc import Iterable
import numpy as np
import json
import os
from glob import glob
from queue import PriorityQueue
from models import get_model
from config import config
class WeightMemory:
def __init__(self, memory_size):
self.memory_size = memory_size
self.mem = dict()
self.oldest = None
@property
def num_elements(self):
return len(self.mem.keys())
@property
def key_oldest(self):
oldest_t = math.inf
for k in self.mem.keys():
if k < oldest_t:
oldest_t = k
if oldest_t == math.inf:
return None
else:
return oldest_t
@property
def key_worst(self):
worst_error = 0.
worst_key = None
for k, element in self.mem.items():
err = element['error']
if err > worst_error:
worst_error = err
worst_key = k
return worst_key
def get_attr(self, name_attr):
return [e[name_attr] for e in self.mem.values()]
def update(self, steps, model_states, optim_states, errors, eviction='oldest'):
if isinstance(steps, Iterable):
for i, step in enumerate(steps):
self._update(step, model_states[i], optim_states[i], errors[i])
else:
self._update(steps, model_states, optim_states, errors)
def _update(self, step, model_state_dict, optim_state_dict, error, eviction='oldest'):
if step in self.mem.keys(): del self.mem[step]
if self.num_elements == self.memory_size:
if eviction == 'oldest':
del self.mem[self.key_oldest]
elif eviction =='worst':
del self.mem[self.key_worst]
else:
raise NotImplementedError
self.mem[time.time()] = {
'step': step,
'model_state': model_state_dict,
'optim_state': optim_state_dict,
'error': error
}
def sample(self, k):
if self.num_elements < k:
raise Exception(k-self.num_elements)
times = np.random.choice(list(self.mem.keys()), size=(k,),
replace=False)
elements = [self.mem.pop(i) for i in times]
steps = [e['step'] for e in elements]
model_states = [e['model_state'] for e in elements]
optim_states = [e['optim_state'] for e in elements]
errors = [e['error'] for e in elements]
return steps, model_states, optim_states, errors
def save(self, save_dir):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
print("Overwrite memory images in {}".format(save_dir))
for k in self.mem.keys():
path = os.path.join(save_dir, str(k))
torch.save(self.mem[k], path)
def load(self, load_dir):
if not os.path.exists(load_dir):
print("Undable to load memory image from {}".format(load_dir))
return False
fnames = sorted(glob(os.path.join(load_dir, '*')))[-self.memory_size:]
keys = [float(fname.split('/')[-1]) for fname in fnames]
for k in keys:
path = os.path.join(load_dir, str(k))
loaded = torch.load(path)
self.mem[k] = loaded
print("Load {} weights into the memory".format(len(keys)))
return True