forked from HSRugg/mnist
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_conv_distributed.py
265 lines (221 loc) · 10.4 KB
/
mnist_conv_distributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright 2017 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
import tensorflow as tf
import sys
import urllib
slim = tf.contrib.slim
if sys.version_info[0] >= 3:
from urllib.request import urlretrieve
else:
from urllib import urlretrieve
# ----- Insert that snippet to run distributed jobs -----
from clusterone import get_data_path, get_logs_path
# Specifying paths when working locally
# For convenience we use a clusterone wrapper (get_data_path below) to be able
# to switch from local to clusterone without cahnging the code.
PATH_TO_LOCAL_LOGS = os.path.expanduser('~/Documents/mnist/logs')
ROOT_PATH_TO_LOCAL_DATA = os.path.expanduser('~/Documents/data/')
# Configure distributed task
try:
job_name = os.environ['JOB_NAME']
task_index = os.environ['TASK_INDEX']
ps_hosts = os.environ['PS_HOSTS']
worker_hosts = os.environ['WORKER_HOSTS']
except:
job_name = None
task_index = 0
ps_hosts = None
worker_hosts = None
flags = tf.app.flags
# Flags for configuring the distributed task
flags.DEFINE_string("job_name", job_name,
"job name: worker or ps")
flags.DEFINE_integer("task_index", task_index,
"Worker task index, should be >= 0. task_index=0 is "
"the chief worker task that performs the variable "
"initialization and checkpoint handling")
flags.DEFINE_string("ps_hosts", ps_hosts,
"Comma-separated list of hostname:port pairs")
flags.DEFINE_string("worker_hosts", worker_hosts,
"Comma-separated list of hostname:port pairs")
# Training related flags
flags.DEFINE_string("data_dir",
get_data_path(
dataset_name = "malo/mnist", #all mounted repo
local_root = ROOT_PATH_TO_LOCAL_DATA,
local_repo = "mnist",
path = 'data'
),
"Path to store logs and checkpoints. It is recommended"
"to use get_logs_path() to define your logs directory."
"so that you can switch from local to clusterone without"
"changing your code."
"If you set your logs directory manually make sure"
"to use /logs/ when running on ClusterOne cloud.")
flags.DEFINE_string("log_dir",
get_logs_path(root=PATH_TO_LOCAL_LOGS),
"Path to dataset. It is recommended to use get_data_path()"
"to define your data directory.so that you can switch "
"from local to clusterone without changing your code."
"If you set the data directory manually makue sure to use"
"/data/ as root path when running on ClusterOne cloud.")
FLAGS = flags.FLAGS
def device_and_target():
# If FLAGS.job_name is not set, we're running single-machine TensorFlow.
# Don't set a device.
if FLAGS.job_name is None:
print("Running single-machine training")
return (None, "")
# Otherwise we're running distributed TensorFlow
print("Running distributed training")
if FLAGS.task_index is None or FLAGS.task_index == "":
raise ValueError("Must specify an explicit `task_index`")
if FLAGS.ps_hosts is None or FLAGS.ps_hosts == "":
raise ValueError("Must specify an explicit `ps_hosts`")
if FLAGS.worker_hosts is None or FLAGS.worker_hosts == "":
raise ValueError("Must specify an explicit `worker_hosts`")
cluster_spec = tf.train.ClusterSpec({
"ps": FLAGS.ps_hosts.split(","),
"worker": FLAGS.worker_hosts.split(","),
})
server = tf.train.Server(
cluster_spec, job_name=FLAGS.job_name, task_index=FLAGS.task_index)
if FLAGS.job_name == "ps":
server.join()
worker_device = "/job:worker/task:{}".format(FLAGS.task_index)
# The device setter will automatically place Variables ops on separate
# parameter servers (ps). The non-Variable ops will be placed on the workers.
return (
tf.train.replica_device_setter(
worker_device=worker_device,
cluster=cluster_spec),
server.target,
)
# --- end of snippet ----
GITHUB_URL ='https://raw.githubusercontent.com/mamcgrath/TensorBoard-TF-Dev-Summit-Tutorial/master/'
### MNIST EMBEDDINGS ###
mnist = tf.contrib.learn.datasets.mnist.read_data_sets(train_dir=FLAGS.data_dir, one_hot=True)
### Get a sprite and labels file for the embedding projector ###
urlretrieve(GITHUB_URL + 'labels_1024.tsv', FLAGS.log_dir + 'labels_1024.tsv')
urlretrieve(GITHUB_URL + 'sprite_1024.png', FLAGS.log_dir + 'sprite_1024.png')
# Add convolution layer
def conv_layer(input, size_in, size_out, name="conv"):
with tf.name_scope(name):
w = tf.Variable(tf.truncated_normal([5, 5, size_in, size_out], stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B")
conv = tf.nn.conv2d(input, w, strides=[1, 1, 1, 1], padding="SAME")
act = tf.nn.relu(conv + b)
tf.summary.histogram("weights", w)
tf.summary.histogram("biases", b)
tf.summary.histogram("activations", act)
return tf.nn.max_pool(act, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
# Add fully connected layer
def fc_layer(input, size_in, size_out, name="fc"):
with tf.name_scope(name):
w = tf.Variable(tf.truncated_normal([size_in, size_out], stddev=0.1), name="W")
b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B")
act = tf.nn.relu(tf.matmul(input, w) + b)
tf.summary.histogram("weights", w)
tf.summary.histogram("biases", b)
tf.summary.histogram("activations", act)
return act
def mnist_model(learning_rate, use_two_conv, use_two_fc, hparam):
if FLAGS.log_dir is None or FLAGS.log_dir == "":
raise ValueError("Must specify an explicit `log_dir`")
if FLAGS.data_dir is None or FLAGS.data_dir == "":
raise ValueError("Must specify an explicit `data_dir`")
tf.reset_default_graph()
device, target = device_and_target() # getting node environment
with tf.device(device): # define model
global_step = slim.get_or_create_global_step()
# Setup placeholders, and reshape the data
x = tf.placeholder(tf.float32, shape=[None, 784], name="x")
x_image = tf.reshape(x, [-1, 28, 28, 1])
tf.summary.image('input', x_image, 3)
y = tf.placeholder(tf.float32, shape=[None, 10], name="labels")
if use_two_conv:
conv1 = conv_layer(x_image, 1, 32, "conv1")
conv_out = conv_layer(conv1, 32, 64, "conv2")
else:
conv1 = conv_layer(x_image, 1, 64, "conv")
conv_out = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
flattened = tf.reshape(conv_out, [-1, 7 * 7 * 64])
if use_two_fc:
fc1 = fc_layer(flattened, 7 * 7 * 64, 1024, "fc1")
embedding_input = fc1
embedding_size = 1024
logits = fc_layer(fc1, 1024, 10, "fc2")
else:
embedding_input = flattened
embedding_size = 7*7*64
logits = fc_layer(flattened, 7*7*64, 10, "fc")
with tf.name_scope("xent"):
xent = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=y), name="xent")
tf.summary.scalar("xent", xent)
with tf.name_scope("train"):
train_step = tf.train.AdamOptimizer(learning_rate).minimize(xent,global_step=global_step)
with tf.name_scope("accuracy"):
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar("accuracy", accuracy)
summ = tf.summary.merge_all()
embedding = tf.Variable(tf.zeros([1024, embedding_size]), name="test_embedding")
assignment = embedding.assign(embedding_input)
saver = tf.train.Saver()
writer = tf.summary.FileWriter(FLAGS.log_dir)
config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig()
embedding_config = config.embeddings.add()
embedding_config.tensor_name = embedding.name
embedding_config.sprite.image_path = FLAGS.log_dir + 'sprite_1024.png'
embedding_config.metadata_path = FLAGS.log_dir + 'labels_1024.tsv'
# Specify the width and height of a single thumbnail.
embedding_config.sprite.single_image_dim.extend([28, 28])
# Using tensorflow's MonitoredTrainingSession to take care of checkpoints
with tf.train.MonitoredTrainingSession(
master=target,
is_chief=(FLAGS.task_index == 0),
checkpoint_dir=FLAGS.log_dir) as sess:
writer.add_graph(sess.graph)
tf.contrib.tensorboard.plugins.projector.visualize_embeddings(writer, config)
for i in range(2001):
batch = mnist.train.next_batch(100)
[train_accuracy, s] = sess.run([accuracy, summ], feed_dict={x: batch[0], y: batch[1]})
if FLAGS.task_index == 0:
if i % 5 == 0:
print("Batch %s - training accuracy: %s" % (i,train_accuracy))
writer.add_summary(s, i)
if i % 500 == 0:
sess.run(assignment, feed_dict={x: mnist.test.images[:1024], y: mnist.test.labels[:1024]})
sess.run(train_step, feed_dict={x: batch[0], y: batch[1]})
def make_hparam_string(learning_rate, use_two_fc, use_two_conv):
conv_param = "conv=2" if use_two_conv else "conv=1"
fc_param = "fc=2" if use_two_fc else "fc=1"
return "lr_%.0E,%s,%s" % (learning_rate, conv_param, fc_param)
def main(unused_argv):
# You can try adding some more learning rates
for learning_rate in [1E-5]:
# Include "False" as a value to try different model architectures
for use_two_fc in [True]:
for use_two_conv in [True]:
# Construct a hyperparameter string for each one (example: "lr_1E-3,fc=2,conv=2)
hparam = make_hparam_string(learning_rate, use_two_fc, use_two_conv)
print('Starting run for %s' % hparam)
# Actually run with the new settings
mnist_model(learning_rate, use_two_fc, use_two_conv, hparam)
if __name__ == '__main__':
tf.app.run()