-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathMLproject
56 lines (51 loc) · 2 KB
/
MLproject
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Author: Luis Kuhn Cuellar
# Email: [email protected]
# Version: 1.0.0
# License: MIT
name: liver-ct-segmentation
# conda_env: environment.yml
docker_env:
image: ghcr.io/mlf-core/liver_ct_segmentation:1.0.0
volumes: ["${PWD}/data:/data"]
environment: [["MLF_CORE_DOCKER_RUN", "TRUE"],["CUBLAS_WORKSPACE_CONFIG", ":4096:8"]]
entry_points:
main:
parameters:
max_epochs: {type: int, default: 1000}
gpus: {type: int, default: 2}
accelerator: {type: string, default: "ddp"}
general-seed: {type: int, default: 0}
pytorch-seed: {type: int, default: 0}
log-interval: {type: int, default: 3000}
lr: {type: float, default: 0.0001}
training-batch-size: {type: int, default: 1}
test-batch-size: {type: int, default: 1}
class-weights: {type: string, default: '0.2, 1.0, 2.5'}
test-percent: {type: float, default: 0.15}
test-epochs: {type: int, default: 10}
dataset-path: {type: string, default: '/data/'}
dataset-size: {type: int, default: 131}
n-channels: {type: int, default: 1}
n-class: {type: int, default: 3}
num_workers: {type: int, default: 24}
dropout-rate: {type: float, default: 0.25}
command: |
python liver_ct_segmentation/liver_ct_segmentation.py \
--max_epochs {max_epochs} \
--gpus {gpus} \
--accelerator {accelerator} \
--general-seed {general-seed} \
--pytorch-seed {pytorch-seed} \
--log-interval {log-interval} \
--lr {lr} \
--training-batch-size {training-batch-size} \
--test-batch-size {test-batch-size} \
--class-weights {class-weights} \
--test-percent {test-percent} \
--test-epochs {test-epochs} \
--dataset-path {dataset-path} \
--dataset-size {dataset-size} \
--n-channels {n-channels} \
--n-class {n-class} \
--num_workers {num_workers} \
--dropout-rate {dropout-rate}