-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgggOUTnew.txt
9 lines (5 loc) · 2.86 KB
/
gggOUTnew.txt
1
2
3
4
5
6
7
8
9
\Whyp{8}{7}{a}{b,c,d,e,f}{q,z} == \sum_{n=0}^{\infty}(\frac{\sqrt{q} a^{3/2}}{b c},\frac{\sqrt{q a}}{b},\frac{\sqrt{q a}}{c},\frac{q a}{b c},d,e,f;q)_{n}/ (q,\sqrt{q a},\frac{q a}{b},\frac{q a}{c},\frac{q a}{d},\frac{q a}{e},\frac{q a}{f};q)_{n} (q a;q)_{2 n}/ (\frac{\sqrt{q} a^{3/2}}{b c};q)_{2 n} (b c z/\sqrt{q a})^n \Whyp{7}{6}{q^{2 n} a}{\frac{b c}{\sqrt{q a}},q^n d,q^n e,q^n f}{q,z}
\Whyp{7}{6}{a}{b,c,d,e}{q,z} == \sum_{n=0}^{\infty}(\frac{\sqrt{q} a^{3/2}}{b c},\frac{\sqrt{q a}}{b},\frac{\sqrt{q a}}{c},\frac{q a}{b c},d,e;q)_{n}/ (q,\sqrt{q a},\frac{q a}{b},\frac{q a}{c},\frac{q a}{d},\frac{q a}{e};q)_{n} (q a;q)_{2 n}/(\frac{\sqrt{q} a^{3/2}}{b c};q)_{2 n} (b c z/\sqrt{q a})^ n \Whyp{6}{5}{q^{2 n} a}{\frac{b c}{\sqrt{q a}},q^n d,q^n e}{q,z}
\Whyp{6}{5}{a}{b,c,d}{q,z} == \sum_{n=0}^{\infty}(\frac{\sqrt{q} a^{3/2}}{b c},\frac{\sqrt{q a}}{b},\frac{\sqrt{q a}}{c},\frac{q a}{b c},d;q)_{n}/ (q,\sqrt{q a},\frac{q a}{b},\frac{q a}{c},\frac{q a}{d};q)_{n} (q a;q)_{2 n}/ (\frac{\sqrt{q} a^{3/2}}{b c};q)_{2 n} (b c z/\sqrt{q a})^n \Whyp{5}{4}{q^{2 n} a}{\frac{b c}{\sqrt{q a}},q^n d}{q,z}
\Whyp{7}{6}{a}{b,c,d,e}{q,z} == \sum_{n=0}^{\infty}(\frac{\sqrt{q} a^{3/2}}{b c},\frac{\sqrt{q a}}{b},\frac{\sqrt{q a}}{c},\frac{q a}{b c},d,e;q)_{n}/ (q,\sqrt{q a},\frac{q a}{b},\frac{q a}{c},\frac{q a}{d},\frac{q a}{e};q)_{n} (q a;q)_{2 n}/(\frac{\sqrt{q} a^{3/2}}{b c};q)_{2 n} (b c z/\sqrt{q a})^ n \Whyp{6}{5}{q^{2 n} a}{\frac{b c}{\sqrt{q a}},q^n d,q^n e}{q,z}
\Whyp{6}{5}{a}{b,c,d}{q,z} == (\frac{\sqrt{q} b c d z}{\sqrt{a}},\frac{b^2 c^2 d^2 z^2}{a^2 q^2};q)_\infty}/ (\frac{b c d z}{(a q)^{3/2}},\frac{b^2 c^2 d^2 z^2}{q a^2};q)_\infty} \sum_{k=0}^{20} (q \sqrt{a},-q \sqrt{a},-\sqrt{a q},\frac{\sqrt{a q}}{b};q)_{k}/ (q,\frac{a q}{b},\frac{\sqrt{q} b c d z}{\sqrt{a}},\frac{q^{5/2} a^{3/2}}{b c d z};q)_{k} q^ k \qhyp{4}{3}{q^{-k},\sqrt{q a},b,\frac{a q}{c d}}{\frac{b q^{\frac{1}{2}-k}}{\sqrt{a}},\frac{a q}{c},\frac{a q}{d}}{ q, q} + (a q,\frac{\sqrt{a q}}{b},\frac{b c d z}{q a},\frac{c d z}{\sqrt{a q}};q)_\infty}/ (\sqrt{a q},\frac{a q}{b},\frac{c d z}{q a},\frac{(a q)^{3/2}}{b c d z};q)_\infty} \sum_{k=0}^{20}(\frac{b c d z}{a \sqrt{q}},-\frac{b c d z}{a \sqrt{q}},-\frac{b c d z}{a q},\frac{c d z}{a q};q)_{k}/ (q,\frac{b^2 c^2 d^2 z^2}{a^2 q},\frac{c d z}{\sqrt{a q}},\frac{b c d z}{\sqrt{a^3 q}};q)_{k} q^ k \qhyp{4}{3}{\frac{q^{\frac{3}{2}-k} a^{3/2}}{b c d z},\sqrt{a q},b,\frac{a q}{c d}}{\frac{a q^{2-k}}{c d z},\frac{a q}{c},\frac{a q}{d}}{ q, q} + (a q,b,c z,d z,\frac{a q}{c d};q)_\infty}/ (z,\frac{a q}{b},\frac{a q}{c},\frac{a q}{d},\frac{a q}{c d z};q)_\infty} \sum_{k=0}^{20} (z,\frac{\sqrt{a q}}{b},\frac{b c d z}{a q},\frac{c d z}{\sqrt{a q}};q)_{k}/ (q,d z,c z,\frac{c d z}{a};q)_{k} q^ k \qhyp{4}{3}{q^{-k},\frac{b c d z}{a \sqrt{q}},-\frac{b c d z}{a \sqrt{q}},-\frac{b c d z}{a q}}{\frac{b q^{\frac{1}{2}-k}}{\sqrt{a}},\frac{c d z}{\sqrt{a q}},\frac{b^2 c^2 d^2 z^2}{a^2 q}}{ q, q}