From f70f94492850398175cf9fc52185e3788955eb46 Mon Sep 17 00:00:00 2001 From: Thomas Samuel Binns Date: Sat, 18 Nov 2023 13:28:21 +0100 Subject: [PATCH] [REFACTOR] split bivar. and multivar. methods --- mne_connectivity/spectral/epochs.py | 1051 +---------------- mne_connectivity/spectral/epochs_bivariate.py | 357 ++++++ .../spectral/epochs_multivariate.py | 748 ++++++++++++ .../spectral/tests/test_spectral.py | 7 +- mne_connectivity/spectral/time.py | 14 +- 5 files changed, 1123 insertions(+), 1054 deletions(-) create mode 100644 mne_connectivity/spectral/epochs_bivariate.py create mode 100644 mne_connectivity/spectral/epochs_multivariate.py diff --git a/mne_connectivity/spectral/epochs.py b/mne_connectivity/spectral/epochs.py index f4899e87..12d7df0a 100644 --- a/mne_connectivity/spectral/epochs.py +++ b/mne_connectivity/spectral/epochs.py @@ -2,8 +2,6 @@ # Denis A. Engemann # Adam Li # Thomas S. Binns -# Tien D. Nguyen -# Richard M. Köhler # # License: BSD (3-clause) @@ -11,7 +9,6 @@ import inspect import numpy as np -import scipy as sp from mne.epochs import BaseEpochs from mne.parallel import parallel_func from mne.source_estimate import _BaseSourceEstimate @@ -20,9 +17,13 @@ _psd_from_mt_adaptive) from mne.time_frequency.tfr import cwt, morlet from mne.time_frequency.multitaper import _compute_mt_params -from mne.utils import ( - ProgressBar, _arange_div, _check_option, _time_mask, logger, warn, verbose) +from mne.utils import (_arange_div, _check_option, _time_mask, logger, warn, + verbose) +from .epochs_bivariate import _CON_METHOD_MAP_BIVARIATE +from .epochs_multivariate import (_CON_METHOD_MAP_MULTIVARIATE, + _check_rank_input, _multivariate_methods, + _gc_methods) from ..base import (SpectralConnectivity, SpectroTemporalConnectivity) from ..utils import fill_doc, check_indices, _check_multivariate_indices @@ -194,46 +195,6 @@ def _prepare_connectivity(epoch_block, times_in, tmin, tmax, n_signals, indices_use, warn_times) -def _check_rank_input(rank, data, indices): - """Check the rank argument is appropriate and compute rank if missing.""" - sv_tol = 1e-6 # tolerance for non-zero singular val (rel. to largest) - if rank is None: - rank = np.zeros((2, len(indices[0])), dtype=int) - - if isinstance(data, BaseEpochs): - data_arr = data.get_data() - else: - data_arr = data - - for group_i in range(2): # seeds and targets - for con_i, con_idcs in enumerate(indices[group_i]): - s = np.linalg.svd(data_arr[:, con_idcs.compressed()], - compute_uv=False) - rank[group_i][con_i] = np.min( - [np.count_nonzero(epoch >= epoch[0] * sv_tol) - for epoch in s]) - - logger.info('Estimated data ranks:') - con_i = 1 - for seed_rank, target_rank in zip(rank[0], rank[1]): - logger.info(' connection %i - seeds (%i); targets (%i)' - % (con_i, seed_rank, target_rank, )) - con_i += 1 - rank = tuple((np.array(rank[0]), np.array(rank[1]))) - - else: - for seed_idcs, target_idcs, seed_rank, target_rank in zip( - indices[0], indices[1], rank[0], rank[1]): - if not (0 < seed_rank <= len(seed_idcs) and - 0 < target_rank <= len(target_idcs)): - raise ValueError( - 'ranks for seeds and targets must be > 0 and <= the ' - 'number of channels in the seeds and targets, ' - 'respectively, for each connection') - - return rank - - def _assemble_spectral_params(mode, n_times, mt_adaptive, mt_bandwidth, sfreq, mt_low_bias, cwt_n_cycles, cwt_freqs, freqs, freq_mask): @@ -274,7 +235,7 @@ def _assemble_spectral_params(mode, n_times, mt_adaptive, mt_bandwidth, sfreq, ######################################################################## -# Various connectivity estimators +# Connectivity estimators base class class _AbstractConEstBase(object): @@ -293,996 +254,7 @@ def compute_con(self, con_idx, n_epochs): raise NotImplementedError('compute_con method not implemented') -class _EpochMeanConEstBase(_AbstractConEstBase): - """Base class for methods that estimate connectivity as mean epoch-wise.""" - - patterns = None - - def __init__(self, n_cons, n_freqs, n_times): - self.n_cons = n_cons - self.n_freqs = n_freqs - self.n_times = n_times - - if n_times == 0: - self.csd_shape = (n_cons, n_freqs) - else: - self.csd_shape = (n_cons, n_freqs, n_times) - - self.con_scores = None - - def start_epoch(self): # noqa: D401 - """Called at the start of each epoch.""" - pass # for this type of con. method we don't do anything - - def combine(self, other): - """Include con. accumated for some epochs in this estimate.""" - self._acc += other._acc - - -class _EpochMeanMultivariateConEstBase(_AbstractConEstBase): - """Base class for mean epoch-wise multivar. con. estimation methods.""" - - n_steps = None - patterns = None - - def __init__(self, n_signals, n_cons, n_freqs, n_times, n_jobs=1): - self.n_signals = n_signals - self.n_cons = n_cons - self.n_freqs = n_freqs - self.n_times = n_times - self.n_jobs = n_jobs - - # include time dimension, even when unused for indexing flexibility - if n_times == 0: - self.csd_shape = (n_signals**2, n_freqs) - self.con_scores = np.zeros((n_cons, n_freqs, 1)) - else: - self.csd_shape = (n_signals**2, n_freqs, n_times) - self.con_scores = np.zeros((n_cons, n_freqs, n_times)) - - # allocate space for accumulation of CSD - self._acc = np.zeros(self.csd_shape, dtype=np.complex128) - - self._compute_n_progress_bar_steps() - - def start_epoch(self): # noqa: D401 - """Called at the start of each epoch.""" - pass # for this type of con. method we don't do anything - - def combine(self, other): - """Include con. accumulated for some epochs in this estimate.""" - self._acc += other._acc - - def accumulate(self, con_idx, csd_xy): - """Accumulate CSD for some connections.""" - self._acc[con_idx] += csd_xy - - def _compute_n_progress_bar_steps(self): - """Calculate the number of steps to include in the progress bar.""" - self.n_steps = int(np.ceil(self.n_freqs / self.n_jobs)) - - def _log_connection_number(self, con_i): - """Log the number of the connection being computed.""" - logger.info('Computing %s for connection %i of %i' - % (self.name, con_i + 1, self.n_cons, )) - - def _get_block_indices(self, block_i, limit): - """Get indices for a computation block capped by a limit.""" - indices = np.arange(block_i * self.n_jobs, (block_i + 1) * self.n_jobs) - - return indices[np.nonzero(indices < limit)] - - def reshape_csd(self): - """Reshape CSD into a matrix of times x freqs x signals x signals.""" - if self.n_times == 0: - return (np.reshape(self._acc, ( - self.n_signals, self.n_signals, self.n_freqs, 1) - ).transpose(3, 2, 0, 1)) - - return (np.reshape(self._acc, ( - self.n_signals, self.n_signals, self.n_freqs, self.n_times) - ).transpose(3, 2, 0, 1)) - - -class _CohEstBase(_EpochMeanConEstBase): - """Base Estimator for Coherence, Coherency, Imag. Coherence.""" - - accumulate_psd = True - - def __init__(self, n_cons, n_freqs, n_times): - super(_CohEstBase, self).__init__(n_cons, n_freqs, n_times) - - # allocate space for accumulation of CSD - self._acc = np.zeros(self.csd_shape, dtype=np.complex128) - - def accumulate(self, con_idx, csd_xy): - """Accumulate CSD for some connections.""" - self._acc[con_idx] += csd_xy - - -class _CohEst(_CohEstBase): - """Coherence Estimator.""" - - name = 'Coherence' - - def compute_con(self, con_idx, n_epochs, psd_xx, psd_yy): # lgtm - """Compute final con. score for some connections.""" - if self.con_scores is None: - self.con_scores = np.zeros(self.csd_shape) - csd_mean = self._acc[con_idx] / n_epochs - self.con_scores[con_idx] = np.abs(csd_mean) / np.sqrt(psd_xx * psd_yy) - - -class _CohyEst(_CohEstBase): - """Coherency Estimator.""" - - name = 'Coherency' - - def compute_con(self, con_idx, n_epochs, psd_xx, psd_yy): # lgtm - """Compute final con. score for some connections.""" - if self.con_scores is None: - self.con_scores = np.zeros(self.csd_shape, - dtype=np.complex128) - csd_mean = self._acc[con_idx] / n_epochs - self.con_scores[con_idx] = csd_mean / np.sqrt(psd_xx * psd_yy) - - -class _ImCohEst(_CohEstBase): - """Imaginary Coherence Estimator.""" - - name = 'Imaginary Coherence' - - def compute_con(self, con_idx, n_epochs, psd_xx, psd_yy): # lgtm - """Compute final con. score for some connections.""" - if self.con_scores is None: - self.con_scores = np.zeros(self.csd_shape) - csd_mean = self._acc[con_idx] / n_epochs - self.con_scores[con_idx] = np.imag(csd_mean) / np.sqrt(psd_xx * psd_yy) - - -class _MultivariateCohEstBase(_EpochMeanMultivariateConEstBase): - """Base estimator for multivariate imag. part of coherency methods. - - See Ewald et al. (2012). NeuroImage. DOI: 10.1016/j.neuroimage.2011.11.084 - for equation references. - """ - - name = None - accumulate_psd = False - - def __init__(self, n_signals, n_cons, n_freqs, n_times, n_jobs=1): - super(_MultivariateCohEstBase, self).__init__( - n_signals, n_cons, n_freqs, n_times, n_jobs) - - def compute_con(self, indices, ranks, n_epochs=1): - """Compute multivariate imag. part of coherency between signals.""" - assert self.name in ['MIC', 'MIM'], ( - 'the class name is not recognised, please contact the ' - 'mne-connectivity developers') - - csd = self.reshape_csd() / n_epochs - n_times = csd.shape[0] - times = np.arange(n_times) - freqs = np.arange(self.n_freqs) - - if self.name == 'MIC': - self.patterns = np.full( - (2, self.n_cons, indices[0].shape[1], self.n_freqs, n_times), - np.nan) - - con_i = 0 - for seed_idcs, target_idcs, seed_rank, target_rank in zip( - indices[0], indices[1], ranks[0], ranks[1]): - self._log_connection_number(con_i) - - seed_idcs = seed_idcs.compressed() - target_idcs = target_idcs.compressed() - con_idcs = [*seed_idcs, *target_idcs] - - C = csd[np.ix_(times, freqs, con_idcs, con_idcs)] - - # Eqs. 32 & 33 - C_bar, U_bar_aa, U_bar_bb = self._csd_svd( - C, seed_idcs, seed_rank, target_rank) - - # Eqs. 3 & 4 - E = self._compute_e(C_bar, n_seeds=U_bar_aa.shape[3]) - - if self.name == 'MIC': - self._compute_mic(E, C, seed_idcs, target_idcs, n_times, - U_bar_aa, U_bar_bb, con_i) - else: - self._compute_mim(E, seed_idcs, target_idcs, con_i) - - con_i += 1 - - self.reshape_results() - - def _csd_svd(self, csd, seed_idcs, seed_rank, target_rank): - """Dimensionality reduction of CSD with SVD.""" - n_times = csd.shape[0] - n_seeds = len(seed_idcs) - n_targets = csd.shape[3] - n_seeds - - C_aa = csd[..., :n_seeds, :n_seeds] - C_ab = csd[..., :n_seeds, n_seeds:] - C_bb = csd[..., n_seeds:, n_seeds:] - C_ba = csd[..., n_seeds:, :n_seeds] - - # Eq. 32 - if seed_rank != n_seeds: - U_aa = np.linalg.svd(np.real(C_aa), full_matrices=False)[0] - U_bar_aa = U_aa[..., :seed_rank] - else: - U_bar_aa = np.broadcast_to( - np.identity(n_seeds), - (n_times, self.n_freqs) + (n_seeds, n_seeds)) - - if target_rank != n_targets: - U_bb = np.linalg.svd(np.real(C_bb), full_matrices=False)[0] - U_bar_bb = U_bb[..., :target_rank] - else: - U_bar_bb = np.broadcast_to( - np.identity(n_targets), - (n_times, self.n_freqs) + (n_targets, n_targets)) - - # Eq. 33 - C_bar_aa = np.matmul( - U_bar_aa.transpose(0, 1, 3, 2), np.matmul(C_aa, U_bar_aa)) - C_bar_ab = np.matmul( - U_bar_aa.transpose(0, 1, 3, 2), np.matmul(C_ab, U_bar_bb)) - C_bar_bb = np.matmul( - U_bar_bb.transpose(0, 1, 3, 2), np.matmul(C_bb, U_bar_bb)) - C_bar_ba = np.matmul( - U_bar_bb.transpose(0, 1, 3, 2), np.matmul(C_ba, U_bar_aa)) - C_bar = np.append(np.append(C_bar_aa, C_bar_ab, axis=3), - np.append(C_bar_ba, C_bar_bb, axis=3), axis=2) - - return C_bar, U_bar_aa, U_bar_bb - - def _compute_e(self, csd, n_seeds): - """Compute E from the CSD.""" - C_r = np.real(csd) - - parallel, parallel_compute_t, _ = parallel_func( - _mic_mim_compute_t, self.n_jobs, verbose=False) - - # imag. part of T filled when data is rank-deficient - T = np.zeros(csd.shape, dtype=np.complex128) - for block_i in ProgressBar( - range(self.n_steps), mesg="frequency blocks"): - freqs = self._get_block_indices(block_i, self.n_freqs) - T[:, freqs] = np.array(parallel(parallel_compute_t( - C_r[:, f], T[:, f], n_seeds) for f in freqs) - ).transpose(1, 0, 2, 3) - - if not np.isreal(T).all() or not np.isfinite(T).all(): - raise RuntimeError( - 'the transformation matrix of the data must be real-valued ' - 'and contain no NaN or infinity values; check that you are ' - 'using full rank data or specify an appropriate rank for the ' - 'seeds and targets that is less than or equal to their ranks') - T = np.real(T) # make T real if check passes - - # Eq. 4 - D = np.matmul(T, np.matmul(csd, T)) - - # E as imag. part of D between seeds and targets - return np.imag(D[..., :n_seeds, n_seeds:]) - - def _compute_mic(self, E, C, seed_idcs, target_idcs, n_times, U_bar_aa, - U_bar_bb, con_i): - """Compute MIC and the associated spatial patterns.""" - n_seeds = len(seed_idcs) - n_targets = len(target_idcs) - times = np.arange(n_times) - freqs = np.arange(self.n_freqs) - - # Eigendecomp. to find spatial filters for seeds and targets - w_seeds, V_seeds = np.linalg.eigh( - np.matmul(E, E.transpose(0, 1, 3, 2))) - w_targets, V_targets = np.linalg.eigh( - np.matmul(E.transpose(0, 1, 3, 2), E)) - if ( - len(seed_idcs) == len(target_idcs) and - np.all(np.sort(seed_idcs) == np.sort(target_idcs)) - ): - # strange edge-case where the eigenvectors returned should be a set - # of identity matrices with one rotated by 90 degrees, but are - # instead identical (i.e. are not rotated versions of one another). - # This leads to the case where the spatial filters are incorrectly - # applied, resulting in connectivity estimates of ~0 when they - # should be perfectly correlated ~1. Accordingly, we manually - # create a set of rotated identity matrices to use as the filters. - create_filter = False - stop = False - while not create_filter and not stop: - for time_i in range(n_times): - for freq_i in range(self.n_freqs): - if np.all(V_seeds[time_i, freq_i] == - V_targets[time_i, freq_i]): - create_filter = True - break - stop = True - if create_filter: - n_chans = E.shape[2] - eye_4d = np.zeros_like(V_seeds) - eye_4d[:, :, np.arange(n_chans), np.arange(n_chans)] = 1 - V_seeds = eye_4d - V_targets = np.rot90(eye_4d, axes=(2, 3)) - - # Spatial filters with largest eigval. for seeds and targets - alpha = V_seeds[times[:, None], freqs, :, w_seeds.argmax(axis=2)] - beta = V_targets[times[:, None], freqs, :, w_targets.argmax(axis=2)] - - # Eq. 46 (seed spatial patterns) - self.patterns[0, con_i, :n_seeds] = (np.matmul( - np.real(C[..., :n_seeds, :n_seeds]), - np.matmul(U_bar_aa, np.expand_dims(alpha, axis=3))))[..., 0].T - - # Eq. 47 (target spatial patterns) - self.patterns[1, con_i, :n_targets] = (np.matmul( - np.real(C[..., n_seeds:, n_seeds:]), - np.matmul(U_bar_bb, np.expand_dims(beta, axis=3))))[..., 0].T - - # Eq. 7 - self.con_scores[con_i] = (np.einsum( - 'ijk,ijk->ij', alpha, np.matmul(E, np.expand_dims( - beta, axis=3))[..., 0] - ) / np.linalg.norm(alpha, axis=2) * np.linalg.norm(beta, axis=2)).T - - def _compute_mim(self, E, seed_idcs, target_idcs, con_i): - """Compute MIM (a.k.a. GIM if seeds == targets).""" - # Eq. 14 - self.con_scores[con_i] = np.matmul( - E, E.transpose(0, 1, 3, 2)).trace(axis1=2, axis2=3).T - - # Eq. 15 - if ( - len(seed_idcs) == len(target_idcs) and - np.all(np.sort(seed_idcs) == np.sort(target_idcs)) - ): - self.con_scores[con_i] *= 0.5 - - def reshape_results(self): - """Remove time dimension from results, if necessary.""" - if self.n_times == 0: - self.con_scores = self.con_scores[..., 0] - if self.patterns is not None: - self.patterns = self.patterns[..., 0] - - -def _mic_mim_compute_t(C, T, n_seeds): - """Compute T for a single frequency (used for MIC and MIM).""" - for time_i in range(C.shape[0]): - T[time_i, :n_seeds, :n_seeds] = sp.linalg.fractional_matrix_power( - C[time_i, :n_seeds, :n_seeds], -0.5 - ) - T[time_i, n_seeds:, n_seeds:] = sp.linalg.fractional_matrix_power( - C[time_i, n_seeds:, n_seeds:], -0.5 - ) - - return T - - -class _MICEst(_MultivariateCohEstBase): - """Multivariate imaginary part of coherency (MIC) estimator.""" - - name = "MIC" - - -class _MIMEst(_MultivariateCohEstBase): - """Multivariate interaction measure (MIM) estimator.""" - - name = "MIM" - - -class _PLVEst(_EpochMeanConEstBase): - """PLV Estimator.""" - - name = 'PLV' - accumulate_psd = False - - def __init__(self, n_cons, n_freqs, n_times): - super(_PLVEst, self).__init__(n_cons, n_freqs, n_times) - - # allocate accumulator - self._acc = np.zeros(self.csd_shape, dtype=np.complex128) - - def accumulate(self, con_idx, csd_xy): - """Accumulate some connections.""" - self._acc[con_idx] += csd_xy / np.abs(csd_xy) - - def compute_con(self, con_idx, n_epochs): - """Compute final con. score for some connections.""" - if self.con_scores is None: - self.con_scores = np.zeros(self.csd_shape) - plv = np.abs(self._acc / n_epochs) - self.con_scores[con_idx] = plv - - -class _ciPLVEst(_EpochMeanConEstBase): - """corrected imaginary PLV Estimator.""" - - name = 'ciPLV' - accumulate_psd = False - - def __init__(self, n_cons, n_freqs, n_times): - super(_ciPLVEst, self).__init__(n_cons, n_freqs, n_times) - - # allocate accumulator - self._acc = np.zeros(self.csd_shape, dtype=np.complex128) - - def accumulate(self, con_idx, csd_xy): - """Accumulate some connections.""" - self._acc[con_idx] += csd_xy / np.abs(csd_xy) - - def compute_con(self, con_idx, n_epochs): - """Compute final con. score for some connections.""" - if self.con_scores is None: - self.con_scores = np.zeros(self.csd_shape) - imag_plv = np.abs(np.imag(self._acc)) / n_epochs - real_plv = np.real(self._acc) / n_epochs - real_plv = np.clip(real_plv, -1, 1) # bounded from -1 to 1 - mask = (np.abs(real_plv) == 1) # avoid division by 0 - real_plv[mask] = 0 - corrected_imag_plv = imag_plv / np.sqrt(1 - real_plv ** 2) - self.con_scores[con_idx] = corrected_imag_plv - - -class _PLIEst(_EpochMeanConEstBase): - """PLI Estimator.""" - - name = 'PLI' - accumulate_psd = False - - def __init__(self, n_cons, n_freqs, n_times): - super(_PLIEst, self).__init__(n_cons, n_freqs, n_times) - - # allocate accumulator - self._acc = np.zeros(self.csd_shape) - - def accumulate(self, con_idx, csd_xy): - """Accumulate some connections.""" - self._acc[con_idx] += np.sign(np.imag(csd_xy)) - - def compute_con(self, con_idx, n_epochs): - """Compute final con. score for some connections.""" - if self.con_scores is None: - self.con_scores = np.zeros(self.csd_shape) - pli_mean = self._acc[con_idx] / n_epochs - self.con_scores[con_idx] = np.abs(pli_mean) - - -class _PLIUnbiasedEst(_PLIEst): - """Unbiased PLI Square Estimator.""" - - name = 'Unbiased PLI Square' - accumulate_psd = False - - def compute_con(self, con_idx, n_epochs): - """Compute final con. score for some connections.""" - if self.con_scores is None: - self.con_scores = np.zeros(self.csd_shape) - pli_mean = self._acc[con_idx] / n_epochs - - # See Vinck paper Eq. (30) - con = (n_epochs * pli_mean ** 2 - 1) / (n_epochs - 1) - - self.con_scores[con_idx] = con - - -class _DPLIEst(_EpochMeanConEstBase): - """DPLI Estimator.""" - - name = 'DPLI' - accumulate_psd = False - - def __init__(self, n_cons, n_freqs, n_times): - super(_DPLIEst, self).__init__(n_cons, n_freqs, n_times) - - # allocate accumulator - self._acc = np.zeros(self.csd_shape) - - def accumulate(self, con_idx, csd_xy): - """Accumulate some connections.""" - self._acc[con_idx] += np.heaviside(np.imag(csd_xy), 0.5) - - def compute_con(self, con_idx, n_epochs): - """Compute final con. score for some connections.""" - if self.con_scores is None: - self.con_scores = np.zeros(self.csd_shape) - - con = self._acc[con_idx] / n_epochs - - self.con_scores[con_idx] = con - - -class _WPLIEst(_EpochMeanConEstBase): - """WPLI Estimator.""" - - name = 'WPLI' - accumulate_psd = False - - def __init__(self, n_cons, n_freqs, n_times): - super(_WPLIEst, self).__init__(n_cons, n_freqs, n_times) - - # store both imag(csd) and abs(imag(csd)) - acc_shape = (2,) + self.csd_shape - self._acc = np.zeros(acc_shape) - - def accumulate(self, con_idx, csd_xy): - """Accumulate some connections.""" - im_csd = np.imag(csd_xy) - self._acc[0, con_idx] += im_csd - self._acc[1, con_idx] += np.abs(im_csd) - - def compute_con(self, con_idx, n_epochs): - """Compute final con. score for some connections.""" - if self.con_scores is None: - self.con_scores = np.zeros(self.csd_shape) - - num = np.abs(self._acc[0, con_idx]) - denom = self._acc[1, con_idx] - - # handle zeros in denominator - z_denom = np.where(denom == 0.) - denom[z_denom] = 1. - - con = num / denom - - # where we had zeros in denominator, we set con to zero - con[z_denom] = 0. - - self.con_scores[con_idx] = con - - -class _WPLIDebiasedEst(_EpochMeanConEstBase): - """Debiased WPLI Square Estimator.""" - - name = 'Debiased WPLI Square' - accumulate_psd = False - - def __init__(self, n_cons, n_freqs, n_times): - super(_WPLIDebiasedEst, self).__init__(n_cons, n_freqs, n_times) - # store imag(csd), abs(imag(csd)), imag(csd)^2 - acc_shape = (3,) + self.csd_shape - self._acc = np.zeros(acc_shape) - - def accumulate(self, con_idx, csd_xy): - """Accumulate some connections.""" - im_csd = np.imag(csd_xy) - self._acc[0, con_idx] += im_csd - self._acc[1, con_idx] += np.abs(im_csd) - self._acc[2, con_idx] += im_csd ** 2 - - def compute_con(self, con_idx, n_epochs): - """Compute final con. score for some connections.""" - if self.con_scores is None: - self.con_scores = np.zeros(self.csd_shape) - - # note: we use the trick from fieldtrip to compute the - # the estimate over all pairwise epoch combinations - sum_im_csd = self._acc[0, con_idx] - sum_abs_im_csd = self._acc[1, con_idx] - sum_sq_im_csd = self._acc[2, con_idx] - - denom = sum_abs_im_csd ** 2 - sum_sq_im_csd - - # handle zeros in denominator - z_denom = np.where(denom == 0.) - denom[z_denom] = 1. - - con = (sum_im_csd ** 2 - sum_sq_im_csd) / denom - - # where we had zeros in denominator, we set con to zero - con[z_denom] = 0. - - self.con_scores[con_idx] = con - - -class _PPCEst(_EpochMeanConEstBase): - """Pairwise Phase Consistency (PPC) Estimator.""" - - name = 'PPC' - accumulate_psd = False - - def __init__(self, n_cons, n_freqs, n_times): - super(_PPCEst, self).__init__(n_cons, n_freqs, n_times) - - # store csd / abs(csd) - self._acc = np.zeros(self.csd_shape, dtype=np.complex128) - - def accumulate(self, con_idx, csd_xy): - """Accumulate some connections.""" - denom = np.abs(csd_xy) - z_denom = np.where(denom == 0.) - denom[z_denom] = 1. - this_acc = csd_xy / denom - this_acc[z_denom] = 0. # handle division by zero - - self._acc[con_idx] += this_acc - - def compute_con(self, con_idx, n_epochs): - """Compute final con. score for some connections.""" - if self.con_scores is None: - self.con_scores = np.zeros(self.csd_shape) - - # note: we use the trick from fieldtrip to compute the - # the estimate over all pairwise epoch combinations - con = ((self._acc[con_idx] * np.conj(self._acc[con_idx]) - n_epochs) / - (n_epochs * (n_epochs - 1.))) - - self.con_scores[con_idx] = np.real(con) - - -class _GCEstBase(_EpochMeanMultivariateConEstBase): - """Base multivariate state-space Granger causality estimator.""" - - accumulate_psd = False - - def __init__(self, n_signals, n_cons, n_freqs, n_times, n_lags, n_jobs=1): - super(_GCEstBase, self).__init__( - n_signals, n_cons, n_freqs, n_times, n_jobs) - - self.freq_res = (self.n_freqs - 1) * 2 - if n_lags >= self.freq_res: - raise ValueError( - 'the number of lags (%i) must be less than double the ' - 'frequency resolution (%i)' % (n_lags, self.freq_res, )) - self.n_lags = n_lags - - def compute_con(self, indices, ranks, n_epochs=1): - """Compute multivariate state-space Granger causality.""" - assert self.name in ['GC', 'GC time-reversed'], ( - 'the class name is not recognised, please contact the ' - 'mne-connectivity developers') - - csd = self.reshape_csd() / n_epochs - - n_times = csd.shape[0] - times = np.arange(n_times) - freqs = np.arange(self.n_freqs) - - con_i = 0 - for seed_idcs, target_idcs, seed_rank, target_rank in zip( - indices[0], indices[1], ranks[0], ranks[1]): - self._log_connection_number(con_i) - - seed_idcs = seed_idcs.compressed() - target_idcs = target_idcs.compressed() - con_idcs = [*seed_idcs, *target_idcs] - - C = csd[np.ix_(times, freqs, con_idcs, con_idcs)] - - C_bar = self._csd_svd(C, seed_idcs, seed_rank, target_rank) - n_signals = seed_rank + target_rank - con_seeds = np.arange(seed_rank) - con_targets = np.arange(target_rank) + seed_rank - - autocov = self._compute_autocov(C_bar) - if self.name == "GC time-reversed": - autocov = autocov.transpose(0, 1, 3, 2) - - A_f, V = self._autocov_to_full_var(autocov) - A_f_3d = np.reshape( - A_f, (n_times, n_signals, n_signals * self.n_lags), - order="F") - A, K = self._full_var_to_iss(A_f_3d) - - self.con_scores[con_i] = self._iss_to_ugc( - A, A_f_3d, K, V, con_seeds, con_targets) - - con_i += 1 - - self.reshape_results() - - def _csd_svd(self, csd, seed_idcs, seed_rank, target_rank): - """Dimensionality reduction of CSD with SVD on the covariance.""" - # sum over times and epochs to get cov. from CSD - cov = csd.sum(axis=(0, 1)) - - n_seeds = len(seed_idcs) - n_targets = csd.shape[3] - n_seeds - - cov_aa = cov[:n_seeds, :n_seeds] - cov_bb = cov[n_seeds:, n_seeds:] - - if seed_rank != n_seeds: - U_aa = np.linalg.svd(np.real(cov_aa), full_matrices=False)[0] - U_bar_aa = U_aa[:, :seed_rank] - else: - U_bar_aa = np.identity(n_seeds) - - if target_rank != n_targets: - U_bb = np.linalg.svd(np.real(cov_bb), full_matrices=False)[0] - U_bar_bb = U_bb[:, :target_rank] - else: - U_bar_bb = np.identity(n_targets) - - C_aa = csd[..., :n_seeds, :n_seeds] - C_ab = csd[..., :n_seeds, n_seeds:] - C_bb = csd[..., n_seeds:, n_seeds:] - C_ba = csd[..., n_seeds:, :n_seeds] - - C_bar_aa = np.matmul( - U_bar_aa.transpose(1, 0), np.matmul(C_aa, U_bar_aa)) - C_bar_ab = np.matmul( - U_bar_aa.transpose(1, 0), np.matmul(C_ab, U_bar_bb)) - C_bar_bb = np.matmul( - U_bar_bb.transpose(1, 0), np.matmul(C_bb, U_bar_bb)) - C_bar_ba = np.matmul( - U_bar_bb.transpose(1, 0), np.matmul(C_ba, U_bar_aa)) - C_bar = np.append(np.append(C_bar_aa, C_bar_ab, axis=3), - np.append(C_bar_ba, C_bar_bb, axis=3), axis=2) - - return C_bar - - def _compute_autocov(self, csd): - """Compute autocovariance from the CSD.""" - n_times = csd.shape[0] - n_signals = csd.shape[2] - - circular_shifted_csd = np.concatenate( - [np.flip(np.conj(csd[:, 1:]), axis=1), csd[:, :-1]], axis=1) - ifft_shifted_csd = self._block_ifft( - circular_shifted_csd, self.freq_res) - lags_ifft_shifted_csd = np.reshape( - ifft_shifted_csd[:, :self.n_lags + 1], - (n_times, self.n_lags + 1, n_signals ** 2), order="F") - - signs = np.repeat([1], self.n_lags + 1).tolist() - signs[1::2] = [x * -1 for x in signs[1::2]] - sign_matrix = np.repeat( - np.tile(np.array(signs), (n_signals ** 2, 1))[np.newaxis], - n_times, axis=0).transpose(0, 2, 1) - - return np.real(np.reshape( - sign_matrix * lags_ifft_shifted_csd, - (n_times, self.n_lags + 1, n_signals, n_signals), order="F")) - - def _block_ifft(self, csd, n_points): - """Compute block iFFT with n points.""" - shape = csd.shape - csd_3d = np.reshape( - csd, (shape[0], shape[1], shape[2] * shape[3]), order="F") - - csd_ifft = np.fft.ifft(csd_3d, n=n_points, axis=1) - - return np.reshape(csd_ifft, shape, order="F") - - def _autocov_to_full_var(self, autocov): - """Compute full VAR model using Whittle's LWR recursion.""" - if np.any(np.linalg.det(autocov) == 0): - raise RuntimeError( - 'the autocovariance matrix is singular; check if your data is ' - 'rank deficient and specify an appropriate rank argument <= ' - 'the rank of the seeds and targets') - - A_f, V = self._whittle_lwr_recursion(autocov) - - if not np.isfinite(A_f).all(): - raise RuntimeError('at least one VAR model coefficient is ' - 'infinite or NaN; check the data you are using') - - try: - np.linalg.cholesky(V) - except np.linalg.LinAlgError as np_error: - raise RuntimeError( - 'the covariance matrix of the residuals is not ' - 'positive-definite; check the singular values of your data ' - 'and specify an appropriate rank argument <= the rank of the ' - 'seeds and targets') from np_error - - return A_f, V - - def _whittle_lwr_recursion(self, G): - """Solve Yule-Walker eqs. for full VAR params. with LWR recursion. - - See: Whittle P., 1963. Biometrika, DOI: 10.1093/biomet/50.1-2.129 - """ - # Initialise recursion - n = G.shape[2] # number of signals - q = G.shape[1] - 1 # number of lags - t = G.shape[0] # number of times - qn = n * q - - cov = G[:, 0, :, :] # covariance - G_f = np.reshape( - G[:, 1:, :, :].transpose(0, 3, 1, 2), (t, qn, n), - order="F") # forward autocov - G_b = np.reshape( - np.flip(G[:, 1:, :, :], 1).transpose(0, 3, 2, 1), (t, n, qn), - order="F").transpose(0, 2, 1) # backward autocov - - A_f = np.zeros((t, n, qn)) # forward coefficients - A_b = np.zeros((t, n, qn)) # backward coefficients - - k = 1 # model order - r = q - k - k_f = np.arange(k * n) # forward indices - k_b = np.arange(r * n, qn) # backward indices - - try: - A_f[:, :, k_f] = np.linalg.solve( - cov, G_b[:, k_b, :].transpose(0, 2, 1)).transpose(0, 2, 1) - A_b[:, :, k_b] = np.linalg.solve( - cov, G_f[:, k_f, :].transpose(0, 2, 1)).transpose(0, 2, 1) - - # Perform recursion - for k in np.arange(2, q + 1): - var_A = (G_b[:, (r - 1) * n: r * n, :] - - np.matmul(A_f[:, :, k_f], G_b[:, k_b, :])) - var_B = cov - np.matmul(A_b[:, :, k_b], G_b[:, k_b, :]) - AA_f = np.linalg.solve( - var_B, var_A.transpose(0, 2, 1)).transpose(0, 2, 1) - - var_A = (G_f[:, (k - 1) * n: k * n, :] - - np.matmul(A_b[:, :, k_b], G_f[:, k_f, :])) - var_B = cov - np.matmul(A_f[:, :, k_f], G_f[:, k_f, :]) - AA_b = np.linalg.solve( - var_B, var_A.transpose(0, 2, 1)).transpose(0, 2, 1) - - A_f_previous = A_f[:, :, k_f] - A_b_previous = A_b[:, :, k_b] - - r = q - k - k_f = np.arange(k * n) - k_b = np.arange(r * n, qn) - - A_f[:, :, k_f] = np.dstack( - (A_f_previous - np.matmul(AA_f, A_b_previous), AA_f)) - A_b[:, :, k_b] = np.dstack( - (AA_b, A_b_previous - np.matmul(AA_b, A_f_previous))) - except np.linalg.LinAlgError as np_error: - raise RuntimeError( - 'the autocovariance matrix is singular; check if your data is ' - 'rank deficient and specify an appropriate rank argument <= ' - 'the rank of the seeds and targets') from np_error - - V = cov - np.matmul(A_f, G_f) - A_f = np.reshape(A_f, (t, n, n, q), order="F") - - return A_f, V - - def _full_var_to_iss(self, A_f): - """Compute innovations-form parameters for a state-space model. - - Parameters computed from a full VAR model using Aoki's method. For a - non-moving-average full VAR model, the state-space parameter C - (observation matrix) is identical to AF of the VAR model. - - See: Barnett, L. & Seth, A.K., 2015, Physical Review, DOI: - 10.1103/PhysRevE.91.040101. - """ - t = A_f.shape[0] - m = A_f.shape[1] # number of signals - p = A_f.shape[2] // m # number of autoregressive lags - - I_p = np.dstack(t * [np.eye(m * p)]).transpose(2, 0, 1) - A = np.hstack((A_f, I_p[:, : (m * p - m), :])) # state transition - # matrix - K = np.hstack(( - np.dstack(t * [np.eye(m)]).transpose(2, 0, 1), - np.zeros((t, (m * (p - 1)), m)))) # Kalman gain matrix - - return A, K - - def _iss_to_ugc(self, A, C, K, V, seeds, targets): - """Compute unconditional GC from innovations-form state-space params. - - See: Barnett, L. & Seth, A.K., 2015, Physical Review, DOI: - 10.1103/PhysRevE.91.040101. - """ - times = np.arange(A.shape[0]) - freqs = np.arange(self.n_freqs) - z = np.exp(-1j * np.pi * np.linspace(0, 1, self.n_freqs)) # points - # on a unit circle in the complex plane, one for each frequency - - H = self._iss_to_tf(A, C, K, z) # spectral transfer function - V_22_1 = np.linalg.cholesky(self._partial_covar(V, seeds, targets)) - HV = np.matmul(H, np.linalg.cholesky(V)) - S = np.matmul(HV, HV.conj().transpose(0, 1, 3, 2)) # Eq. 6 - S_11 = S[np.ix_(freqs, times, targets, targets)] - HV_12 = np.matmul(H[np.ix_(freqs, times, targets, seeds)], V_22_1) - HVH = np.matmul(HV_12, HV_12.conj().transpose(0, 1, 3, 2)) - - # Eq. 11 - return np.real( - np.log(np.linalg.det(S_11)) - np.log(np.linalg.det(S_11 - HVH))) - - def _iss_to_tf(self, A, C, K, z): - """Compute transfer function for innovations-form state-space params. - - In the frequency domain, the back-shift operator, z, is a vector of - points on a unit circle in the complex plane. z = e^-iw, where -pi < w - <= pi. - - A note on efficiency: solving over the 4D time-freq. tensor is slower - than looping over times and freqs when n_times and n_freqs high, and - when n_times and n_freqs low, looping over times and freqs very fast - anyway (plus tensor solving doesn't allow for parallelisation). - - See: Barnett, L. & Seth, A.K., 2015, Physical Review, DOI: - 10.1103/PhysRevE.91.040101. - """ - t = A.shape[0] - h = self.n_freqs - n = C.shape[1] - m = A.shape[1] - I_n = np.eye(n) - I_m = np.eye(m) - H = np.zeros((h, t, n, n), dtype=np.complex128) - - parallel, parallel_compute_H, _ = parallel_func( - _gc_compute_H, self.n_jobs, verbose=False - ) - H = np.zeros((h, t, n, n), dtype=np.complex128) - for block_i in ProgressBar( - range(self.n_steps), mesg="frequency blocks" - ): - freqs = self._get_block_indices(block_i, self.n_freqs) - H[freqs] = parallel( - parallel_compute_H(A, C, K, z[k], I_n, I_m) for k in freqs) - - return H - - def _partial_covar(self, V, seeds, targets): - """Compute partial covariance of a matrix. - - Given a covariance matrix V, the partial covariance matrix of V between - indices i and j, given k (V_ij|k), is equivalent to V_ij - V_ik * - V_kk^-1 * V_kj. In this case, i and j are seeds, and k are targets. - - See: Barnett, L. & Seth, A.K., 2015, Physical Review, DOI: - 10.1103/PhysRevE.91.040101. - """ - times = np.arange(V.shape[0]) - W = np.linalg.solve( - np.linalg.cholesky(V[np.ix_(times, targets, targets)]), - V[np.ix_(times, targets, seeds)], - ) - W = np.matmul(W.transpose(0, 2, 1), W) - - return V[np.ix_(times, seeds, seeds)] - W - - def reshape_results(self): - """Remove time dimension from con. scores, if necessary.""" - if self.n_times == 0: - self.con_scores = self.con_scores[:, :, 0] - - -def _gc_compute_H(A, C, K, z_k, I_n, I_m): - """Compute transfer function for innovations-form state-space params. - - See: Barnett, L. & Seth, A.K., 2015, Physical Review, DOI: - 10.1103/PhysRevE.91.040101, Eq. 4. - """ - from scipy import linalg # XXX: is this necessary??? - H = np.zeros((A.shape[0], C.shape[1], C.shape[1]), dtype=np.complex128) - for t in range(A.shape[0]): - H[t] = I_n + np.matmul( - C[t], linalg.lu_solve(linalg.lu_factor(z_k * I_m - A[t]), K[t])) - - return H - - -class _GCEst(_GCEstBase): - """[seeds -> targets] state-space GC estimator.""" - - name = "GC" - - -class _GCTREst(_GCEstBase): - """time-reversed[seeds -> targets] state-space GC estimator.""" - - name = "GC time-reversed" - -############################################################################### - - -_multivariate_methods = ['mic', 'mim', 'gc', 'gc_tr'] -_gc_methods = ['gc', 'gc_tr'] +######################################################################## def _epoch_spectral_connectivity(data, sig_idx, tmin_idx, tmax_idx, sfreq, @@ -1501,12 +473,7 @@ def _get_and_verify_data_sizes(data, sfreq, n_signals=None, n_times=None, # map names to estimator types -_CON_METHOD_MAP = {'coh': _CohEst, 'cohy': _CohyEst, 'imcoh': _ImCohEst, - 'plv': _PLVEst, 'ciplv': _ciPLVEst, 'ppc': _PPCEst, - 'pli': _PLIEst, 'pli2_unbiased': _PLIUnbiasedEst, - 'dpli': _DPLIEst, 'wpli': _WPLIEst, - 'wpli2_debiased': _WPLIDebiasedEst, 'mic': _MICEst, - 'mim': _MIMEst, 'gc': _GCEst, 'gc_tr': _GCTREst} +_CON_METHOD_MAP = {**_CON_METHOD_MAP_BIVARIATE, **_CON_METHOD_MAP_MULTIVARIATE} def _check_estimators(method): diff --git a/mne_connectivity/spectral/epochs_bivariate.py b/mne_connectivity/spectral/epochs_bivariate.py new file mode 100644 index 00000000..ce47cc9b --- /dev/null +++ b/mne_connectivity/spectral/epochs_bivariate.py @@ -0,0 +1,357 @@ +# Authors: Martin Luessi +# Denis A. Engemann +# Adam Li +# +# License: BSD (3-clause) + +import numpy as np + + +######################################################################## +# Bivariate connectivity estimators + + +class _AbstractConEstBase(object): + """ABC for connectivity estimators.""" + + def start_epoch(self): + raise NotImplementedError('start_epoch method not implemented') + + def accumulate(self, con_idx, csd_xy): + raise NotImplementedError('accumulate method not implemented') + + def combine(self, other): + raise NotImplementedError('combine method not implemented') + + def compute_con(self, con_idx, n_epochs): + raise NotImplementedError('compute_con method not implemented') + + +class _EpochMeanConEstBase(_AbstractConEstBase): + """Base class for methods that estimate connectivity as mean epoch-wise.""" + + patterns = None + + def __init__(self, n_cons, n_freqs, n_times): + self.n_cons = n_cons + self.n_freqs = n_freqs + self.n_times = n_times + + if n_times == 0: + self.csd_shape = (n_cons, n_freqs) + else: + self.csd_shape = (n_cons, n_freqs, n_times) + + self.con_scores = None + + def start_epoch(self): # noqa: D401 + """Called at the start of each epoch.""" + pass # for this type of con. method we don't do anything + + def combine(self, other): + """Include con. accumated for some epochs in this estimate.""" + self._acc += other._acc + + +class _CohEstBase(_EpochMeanConEstBase): + """Base Estimator for Coherence, Coherency, Imag. Coherence.""" + + accumulate_psd = True + + def __init__(self, n_cons, n_freqs, n_times): + super(_CohEstBase, self).__init__(n_cons, n_freqs, n_times) + + # allocate space for accumulation of CSD + self._acc = np.zeros(self.csd_shape, dtype=np.complex128) + + def accumulate(self, con_idx, csd_xy): + """Accumulate CSD for some connections.""" + self._acc[con_idx] += csd_xy + + +class _CohEst(_CohEstBase): + """Coherence Estimator.""" + + name = 'Coherence' + + def compute_con(self, con_idx, n_epochs, psd_xx, psd_yy): # lgtm + """Compute final con. score for some connections.""" + if self.con_scores is None: + self.con_scores = np.zeros(self.csd_shape) + csd_mean = self._acc[con_idx] / n_epochs + self.con_scores[con_idx] = np.abs(csd_mean) / np.sqrt(psd_xx * psd_yy) + + +class _CohyEst(_CohEstBase): + """Coherency Estimator.""" + + name = 'Coherency' + + def compute_con(self, con_idx, n_epochs, psd_xx, psd_yy): # lgtm + """Compute final con. score for some connections.""" + if self.con_scores is None: + self.con_scores = np.zeros(self.csd_shape, + dtype=np.complex128) + csd_mean = self._acc[con_idx] / n_epochs + self.con_scores[con_idx] = csd_mean / np.sqrt(psd_xx * psd_yy) + + +class _ImCohEst(_CohEstBase): + """Imaginary Coherence Estimator.""" + + name = 'Imaginary Coherence' + + def compute_con(self, con_idx, n_epochs, psd_xx, psd_yy): # lgtm + """Compute final con. score for some connections.""" + if self.con_scores is None: + self.con_scores = np.zeros(self.csd_shape) + csd_mean = self._acc[con_idx] / n_epochs + self.con_scores[con_idx] = np.imag(csd_mean) / np.sqrt(psd_xx * psd_yy) + + +class _PLVEst(_EpochMeanConEstBase): + """PLV Estimator.""" + + name = 'PLV' + accumulate_psd = False + + def __init__(self, n_cons, n_freqs, n_times): + super(_PLVEst, self).__init__(n_cons, n_freqs, n_times) + + # allocate accumulator + self._acc = np.zeros(self.csd_shape, dtype=np.complex128) + + def accumulate(self, con_idx, csd_xy): + """Accumulate some connections.""" + self._acc[con_idx] += csd_xy / np.abs(csd_xy) + + def compute_con(self, con_idx, n_epochs): + """Compute final con. score for some connections.""" + if self.con_scores is None: + self.con_scores = np.zeros(self.csd_shape) + plv = np.abs(self._acc / n_epochs) + self.con_scores[con_idx] = plv + + +class _ciPLVEst(_EpochMeanConEstBase): + """corrected imaginary PLV Estimator.""" + + name = 'ciPLV' + accumulate_psd = False + + def __init__(self, n_cons, n_freqs, n_times): + super(_ciPLVEst, self).__init__(n_cons, n_freqs, n_times) + + # allocate accumulator + self._acc = np.zeros(self.csd_shape, dtype=np.complex128) + + def accumulate(self, con_idx, csd_xy): + """Accumulate some connections.""" + self._acc[con_idx] += csd_xy / np.abs(csd_xy) + + def compute_con(self, con_idx, n_epochs): + """Compute final con. score for some connections.""" + if self.con_scores is None: + self.con_scores = np.zeros(self.csd_shape) + imag_plv = np.abs(np.imag(self._acc)) / n_epochs + real_plv = np.real(self._acc) / n_epochs + real_plv = np.clip(real_plv, -1, 1) # bounded from -1 to 1 + mask = (np.abs(real_plv) == 1) # avoid division by 0 + real_plv[mask] = 0 + corrected_imag_plv = imag_plv / np.sqrt(1 - real_plv ** 2) + self.con_scores[con_idx] = corrected_imag_plv + + +class _PLIEst(_EpochMeanConEstBase): + """PLI Estimator.""" + + name = 'PLI' + accumulate_psd = False + + def __init__(self, n_cons, n_freqs, n_times): + super(_PLIEst, self).__init__(n_cons, n_freqs, n_times) + + # allocate accumulator + self._acc = np.zeros(self.csd_shape) + + def accumulate(self, con_idx, csd_xy): + """Accumulate some connections.""" + self._acc[con_idx] += np.sign(np.imag(csd_xy)) + + def compute_con(self, con_idx, n_epochs): + """Compute final con. score for some connections.""" + if self.con_scores is None: + self.con_scores = np.zeros(self.csd_shape) + pli_mean = self._acc[con_idx] / n_epochs + self.con_scores[con_idx] = np.abs(pli_mean) + + +class _PLIUnbiasedEst(_PLIEst): + """Unbiased PLI Square Estimator.""" + + name = 'Unbiased PLI Square' + accumulate_psd = False + + def compute_con(self, con_idx, n_epochs): + """Compute final con. score for some connections.""" + if self.con_scores is None: + self.con_scores = np.zeros(self.csd_shape) + pli_mean = self._acc[con_idx] / n_epochs + + # See Vinck paper Eq. (30) + con = (n_epochs * pli_mean ** 2 - 1) / (n_epochs - 1) + + self.con_scores[con_idx] = con + + +class _DPLIEst(_EpochMeanConEstBase): + """DPLI Estimator.""" + + name = 'DPLI' + accumulate_psd = False + + def __init__(self, n_cons, n_freqs, n_times): + super(_DPLIEst, self).__init__(n_cons, n_freqs, n_times) + + # allocate accumulator + self._acc = np.zeros(self.csd_shape) + + def accumulate(self, con_idx, csd_xy): + """Accumulate some connections.""" + self._acc[con_idx] += np.heaviside(np.imag(csd_xy), 0.5) + + def compute_con(self, con_idx, n_epochs): + """Compute final con. score for some connections.""" + if self.con_scores is None: + self.con_scores = np.zeros(self.csd_shape) + + con = self._acc[con_idx] / n_epochs + + self.con_scores[con_idx] = con + + +class _WPLIEst(_EpochMeanConEstBase): + """WPLI Estimator.""" + + name = 'WPLI' + accumulate_psd = False + + def __init__(self, n_cons, n_freqs, n_times): + super(_WPLIEst, self).__init__(n_cons, n_freqs, n_times) + + # store both imag(csd) and abs(imag(csd)) + acc_shape = (2,) + self.csd_shape + self._acc = np.zeros(acc_shape) + + def accumulate(self, con_idx, csd_xy): + """Accumulate some connections.""" + im_csd = np.imag(csd_xy) + self._acc[0, con_idx] += im_csd + self._acc[1, con_idx] += np.abs(im_csd) + + def compute_con(self, con_idx, n_epochs): + """Compute final con. score for some connections.""" + if self.con_scores is None: + self.con_scores = np.zeros(self.csd_shape) + + num = np.abs(self._acc[0, con_idx]) + denom = self._acc[1, con_idx] + + # handle zeros in denominator + z_denom = np.where(denom == 0.) + denom[z_denom] = 1. + + con = num / denom + + # where we had zeros in denominator, we set con to zero + con[z_denom] = 0. + + self.con_scores[con_idx] = con + + +class _WPLIDebiasedEst(_EpochMeanConEstBase): + """Debiased WPLI Square Estimator.""" + + name = 'Debiased WPLI Square' + accumulate_psd = False + + def __init__(self, n_cons, n_freqs, n_times): + super(_WPLIDebiasedEst, self).__init__(n_cons, n_freqs, n_times) + # store imag(csd), abs(imag(csd)), imag(csd)^2 + acc_shape = (3,) + self.csd_shape + self._acc = np.zeros(acc_shape) + + def accumulate(self, con_idx, csd_xy): + """Accumulate some connections.""" + im_csd = np.imag(csd_xy) + self._acc[0, con_idx] += im_csd + self._acc[1, con_idx] += np.abs(im_csd) + self._acc[2, con_idx] += im_csd ** 2 + + def compute_con(self, con_idx, n_epochs): + """Compute final con. score for some connections.""" + if self.con_scores is None: + self.con_scores = np.zeros(self.csd_shape) + + # note: we use the trick from fieldtrip to compute the + # the estimate over all pairwise epoch combinations + sum_im_csd = self._acc[0, con_idx] + sum_abs_im_csd = self._acc[1, con_idx] + sum_sq_im_csd = self._acc[2, con_idx] + + denom = sum_abs_im_csd ** 2 - sum_sq_im_csd + + # handle zeros in denominator + z_denom = np.where(denom == 0.) + denom[z_denom] = 1. + + con = (sum_im_csd ** 2 - sum_sq_im_csd) / denom + + # where we had zeros in denominator, we set con to zero + con[z_denom] = 0. + + self.con_scores[con_idx] = con + + +class _PPCEst(_EpochMeanConEstBase): + """Pairwise Phase Consistency (PPC) Estimator.""" + + name = 'PPC' + accumulate_psd = False + + def __init__(self, n_cons, n_freqs, n_times): + super(_PPCEst, self).__init__(n_cons, n_freqs, n_times) + + # store csd / abs(csd) + self._acc = np.zeros(self.csd_shape, dtype=np.complex128) + + def accumulate(self, con_idx, csd_xy): + """Accumulate some connections.""" + denom = np.abs(csd_xy) + z_denom = np.where(denom == 0.) + denom[z_denom] = 1. + this_acc = csd_xy / denom + this_acc[z_denom] = 0. # handle division by zero + + self._acc[con_idx] += this_acc + + def compute_con(self, con_idx, n_epochs): + """Compute final con. score for some connections.""" + if self.con_scores is None: + self.con_scores = np.zeros(self.csd_shape) + + # note: we use the trick from fieldtrip to compute the + # the estimate over all pairwise epoch combinations + con = ((self._acc[con_idx] * np.conj(self._acc[con_idx]) - n_epochs) / + (n_epochs * (n_epochs - 1.))) + + self.con_scores[con_idx] = np.real(con) + + +# map names to estimator types +_CON_METHOD_MAP_BIVARIATE = { + 'coh': _CohEst, 'cohy': _CohyEst, 'imcoh': _ImCohEst, 'plv': _PLVEst, + 'ciplv': _ciPLVEst, 'ppc': _PPCEst, 'pli': _PLIEst, + 'pli2_unbiased': _PLIUnbiasedEst, 'dpli': _DPLIEst, 'wpli': _WPLIEst, + 'wpli2_debiased': _WPLIDebiasedEst +} diff --git a/mne_connectivity/spectral/epochs_multivariate.py b/mne_connectivity/spectral/epochs_multivariate.py new file mode 100644 index 00000000..962b895e --- /dev/null +++ b/mne_connectivity/spectral/epochs_multivariate.py @@ -0,0 +1,748 @@ +# Authors: Martin Luessi +# Denis A. Engemann +# Adam Li +# Thomas S. Binns +# Tien D. Nguyen +# Richard M. Köhler +# +# License: BSD (3-clause) + +import numpy as np +import scipy as sp +from mne.epochs import BaseEpochs +from mne.parallel import parallel_func +from mne.utils import ProgressBar, logger + + +def _check_rank_input(rank, data, indices): + """Check the rank argument is appropriate and compute rank if missing.""" + sv_tol = 1e-6 # tolerance for non-zero singular val (rel. to largest) + if rank is None: + rank = np.zeros((2, len(indices[0])), dtype=int) + + if isinstance(data, BaseEpochs): + data_arr = data.get_data() + else: + data_arr = data + + for group_i in range(2): # seeds and targets + for con_i, con_idcs in enumerate(indices[group_i]): + s = np.linalg.svd(data_arr[:, con_idcs.compressed()], + compute_uv=False) + rank[group_i][con_i] = np.min( + [np.count_nonzero(epoch >= epoch[0] * sv_tol) + for epoch in s]) + + logger.info('Estimated data ranks:') + con_i = 1 + for seed_rank, target_rank in zip(rank[0], rank[1]): + logger.info(' connection %i - seeds (%i); targets (%i)' + % (con_i, seed_rank, target_rank, )) + con_i += 1 + rank = tuple((np.array(rank[0]), np.array(rank[1]))) + + else: + for seed_idcs, target_idcs, seed_rank, target_rank in zip( + indices[0], indices[1], rank[0], rank[1]): + if not (0 < seed_rank <= len(seed_idcs) and + 0 < target_rank <= len(target_idcs)): + raise ValueError( + 'ranks for seeds and targets must be > 0 and <= the ' + 'number of channels in the seeds and targets, ' + 'respectively, for each connection') + + return rank + + +######################################################################## +# Multivariate connectivity estimators + + +class _AbstractConEstBase(object): + """ABC for connectivity estimators.""" + + def start_epoch(self): + raise NotImplementedError('start_epoch method not implemented') + + def accumulate(self, con_idx, csd_xy): + raise NotImplementedError('accumulate method not implemented') + + def combine(self, other): + raise NotImplementedError('combine method not implemented') + + def compute_con(self, con_idx, n_epochs): + raise NotImplementedError('compute_con method not implemented') + + +class _EpochMeanMultivariateConEstBase(_AbstractConEstBase): + """Base class for mean epoch-wise multivar. con. estimation methods.""" + + n_steps = None + patterns = None + + def __init__(self, n_signals, n_cons, n_freqs, n_times, n_jobs=1): + self.n_signals = n_signals + self.n_cons = n_cons + self.n_freqs = n_freqs + self.n_times = n_times + self.n_jobs = n_jobs + + # include time dimension, even when unused for indexing flexibility + if n_times == 0: + self.csd_shape = (n_signals**2, n_freqs) + self.con_scores = np.zeros((n_cons, n_freqs, 1)) + else: + self.csd_shape = (n_signals**2, n_freqs, n_times) + self.con_scores = np.zeros((n_cons, n_freqs, n_times)) + + # allocate space for accumulation of CSD + self._acc = np.zeros(self.csd_shape, dtype=np.complex128) + + self._compute_n_progress_bar_steps() + + def start_epoch(self): # noqa: D401 + """Called at the start of each epoch.""" + pass # for this type of con. method we don't do anything + + def combine(self, other): + """Include con. accumulated for some epochs in this estimate.""" + self._acc += other._acc + + def accumulate(self, con_idx, csd_xy): + """Accumulate CSD for some connections.""" + self._acc[con_idx] += csd_xy + + def _compute_n_progress_bar_steps(self): + """Calculate the number of steps to include in the progress bar.""" + self.n_steps = int(np.ceil(self.n_freqs / self.n_jobs)) + + def _log_connection_number(self, con_i): + """Log the number of the connection being computed.""" + logger.info('Computing %s for connection %i of %i' + % (self.name, con_i + 1, self.n_cons, )) + + def _get_block_indices(self, block_i, limit): + """Get indices for a computation block capped by a limit.""" + indices = np.arange(block_i * self.n_jobs, (block_i + 1) * self.n_jobs) + + return indices[np.nonzero(indices < limit)] + + def reshape_csd(self): + """Reshape CSD into a matrix of times x freqs x signals x signals.""" + if self.n_times == 0: + return (np.reshape(self._acc, ( + self.n_signals, self.n_signals, self.n_freqs, 1) + ).transpose(3, 2, 0, 1)) + + return (np.reshape(self._acc, ( + self.n_signals, self.n_signals, self.n_freqs, self.n_times) + ).transpose(3, 2, 0, 1)) + + +class _MultivariateCohEstBase(_EpochMeanMultivariateConEstBase): + """Base estimator for multivariate imag. part of coherency methods. + + See Ewald et al. (2012). NeuroImage. DOI: 10.1016/j.neuroimage.2011.11.084 + for equation references. + """ + + name = None + accumulate_psd = False + + def __init__(self, n_signals, n_cons, n_freqs, n_times, n_jobs=1): + super(_MultivariateCohEstBase, self).__init__( + n_signals, n_cons, n_freqs, n_times, n_jobs) + + def compute_con(self, indices, ranks, n_epochs=1): + """Compute multivariate imag. part of coherency between signals.""" + assert self.name in ['MIC', 'MIM'], ( + 'the class name is not recognised, please contact the ' + 'mne-connectivity developers') + + csd = self.reshape_csd() / n_epochs + n_times = csd.shape[0] + times = np.arange(n_times) + freqs = np.arange(self.n_freqs) + + if self.name == 'MIC': + self.patterns = np.full( + (2, self.n_cons, indices[0].shape[1], self.n_freqs, n_times), + np.nan) + + con_i = 0 + for seed_idcs, target_idcs, seed_rank, target_rank in zip( + indices[0], indices[1], ranks[0], ranks[1]): + self._log_connection_number(con_i) + + seed_idcs = seed_idcs.compressed() + target_idcs = target_idcs.compressed() + con_idcs = [*seed_idcs, *target_idcs] + + C = csd[np.ix_(times, freqs, con_idcs, con_idcs)] + + # Eqs. 32 & 33 + C_bar, U_bar_aa, U_bar_bb = self._csd_svd( + C, seed_idcs, seed_rank, target_rank) + + # Eqs. 3 & 4 + E = self._compute_e(C_bar, n_seeds=U_bar_aa.shape[3]) + + if self.name == 'MIC': + self._compute_mic(E, C, seed_idcs, target_idcs, n_times, + U_bar_aa, U_bar_bb, con_i) + else: + self._compute_mim(E, seed_idcs, target_idcs, con_i) + + con_i += 1 + + self.reshape_results() + + def _csd_svd(self, csd, seed_idcs, seed_rank, target_rank): + """Dimensionality reduction of CSD with SVD.""" + n_times = csd.shape[0] + n_seeds = len(seed_idcs) + n_targets = csd.shape[3] - n_seeds + + C_aa = csd[..., :n_seeds, :n_seeds] + C_ab = csd[..., :n_seeds, n_seeds:] + C_bb = csd[..., n_seeds:, n_seeds:] + C_ba = csd[..., n_seeds:, :n_seeds] + + # Eq. 32 + if seed_rank != n_seeds: + U_aa = np.linalg.svd(np.real(C_aa), full_matrices=False)[0] + U_bar_aa = U_aa[..., :seed_rank] + else: + U_bar_aa = np.broadcast_to( + np.identity(n_seeds), + (n_times, self.n_freqs) + (n_seeds, n_seeds)) + + if target_rank != n_targets: + U_bb = np.linalg.svd(np.real(C_bb), full_matrices=False)[0] + U_bar_bb = U_bb[..., :target_rank] + else: + U_bar_bb = np.broadcast_to( + np.identity(n_targets), + (n_times, self.n_freqs) + (n_targets, n_targets)) + + # Eq. 33 + C_bar_aa = np.matmul( + U_bar_aa.transpose(0, 1, 3, 2), np.matmul(C_aa, U_bar_aa)) + C_bar_ab = np.matmul( + U_bar_aa.transpose(0, 1, 3, 2), np.matmul(C_ab, U_bar_bb)) + C_bar_bb = np.matmul( + U_bar_bb.transpose(0, 1, 3, 2), np.matmul(C_bb, U_bar_bb)) + C_bar_ba = np.matmul( + U_bar_bb.transpose(0, 1, 3, 2), np.matmul(C_ba, U_bar_aa)) + C_bar = np.append(np.append(C_bar_aa, C_bar_ab, axis=3), + np.append(C_bar_ba, C_bar_bb, axis=3), axis=2) + + return C_bar, U_bar_aa, U_bar_bb + + def _compute_e(self, csd, n_seeds): + """Compute E from the CSD.""" + C_r = np.real(csd) + + parallel, parallel_compute_t, _ = parallel_func( + _mic_mim_compute_t, self.n_jobs, verbose=False) + + # imag. part of T filled when data is rank-deficient + T = np.zeros(csd.shape, dtype=np.complex128) + for block_i in ProgressBar( + range(self.n_steps), mesg="frequency blocks"): + freqs = self._get_block_indices(block_i, self.n_freqs) + T[:, freqs] = np.array(parallel(parallel_compute_t( + C_r[:, f], T[:, f], n_seeds) for f in freqs) + ).transpose(1, 0, 2, 3) + + if not np.isreal(T).all() or not np.isfinite(T).all(): + raise RuntimeError( + 'the transformation matrix of the data must be real-valued ' + 'and contain no NaN or infinity values; check that you are ' + 'using full rank data or specify an appropriate rank for the ' + 'seeds and targets that is less than or equal to their ranks') + T = np.real(T) # make T real if check passes + + # Eq. 4 + D = np.matmul(T, np.matmul(csd, T)) + + # E as imag. part of D between seeds and targets + return np.imag(D[..., :n_seeds, n_seeds:]) + + def _compute_mic(self, E, C, seed_idcs, target_idcs, n_times, U_bar_aa, + U_bar_bb, con_i): + """Compute MIC and the associated spatial patterns.""" + n_seeds = len(seed_idcs) + n_targets = len(target_idcs) + times = np.arange(n_times) + freqs = np.arange(self.n_freqs) + + # Eigendecomp. to find spatial filters for seeds and targets + w_seeds, V_seeds = np.linalg.eigh( + np.matmul(E, E.transpose(0, 1, 3, 2))) + w_targets, V_targets = np.linalg.eigh( + np.matmul(E.transpose(0, 1, 3, 2), E)) + if ( + len(seed_idcs) == len(target_idcs) and + np.all(np.sort(seed_idcs) == np.sort(target_idcs)) + ): + # strange edge-case where the eigenvectors returned should be a set + # of identity matrices with one rotated by 90 degrees, but are + # instead identical (i.e. are not rotated versions of one another). + # This leads to the case where the spatial filters are incorrectly + # applied, resulting in connectivity estimates of ~0 when they + # should be perfectly correlated ~1. Accordingly, we manually + # create a set of rotated identity matrices to use as the filters. + create_filter = False + stop = False + while not create_filter and not stop: + for time_i in range(n_times): + for freq_i in range(self.n_freqs): + if np.all(V_seeds[time_i, freq_i] == + V_targets[time_i, freq_i]): + create_filter = True + break + stop = True + if create_filter: + n_chans = E.shape[2] + eye_4d = np.zeros_like(V_seeds) + eye_4d[:, :, np.arange(n_chans), np.arange(n_chans)] = 1 + V_seeds = eye_4d + V_targets = np.rot90(eye_4d, axes=(2, 3)) + + # Spatial filters with largest eigval. for seeds and targets + alpha = V_seeds[times[:, None], freqs, :, w_seeds.argmax(axis=2)] + beta = V_targets[times[:, None], freqs, :, w_targets.argmax(axis=2)] + + # Eq. 46 (seed spatial patterns) + self.patterns[0, con_i, :n_seeds] = (np.matmul( + np.real(C[..., :n_seeds, :n_seeds]), + np.matmul(U_bar_aa, np.expand_dims(alpha, axis=3))))[..., 0].T + + # Eq. 47 (target spatial patterns) + self.patterns[1, con_i, :n_targets] = (np.matmul( + np.real(C[..., n_seeds:, n_seeds:]), + np.matmul(U_bar_bb, np.expand_dims(beta, axis=3))))[..., 0].T + + # Eq. 7 + self.con_scores[con_i] = (np.einsum( + 'ijk,ijk->ij', alpha, np.matmul(E, np.expand_dims( + beta, axis=3))[..., 0] + ) / np.linalg.norm(alpha, axis=2) * np.linalg.norm(beta, axis=2)).T + + def _compute_mim(self, E, seed_idcs, target_idcs, con_i): + """Compute MIM (a.k.a. GIM if seeds == targets).""" + # Eq. 14 + self.con_scores[con_i] = np.matmul( + E, E.transpose(0, 1, 3, 2)).trace(axis1=2, axis2=3).T + + # Eq. 15 + if ( + len(seed_idcs) == len(target_idcs) and + np.all(np.sort(seed_idcs) == np.sort(target_idcs)) + ): + self.con_scores[con_i] *= 0.5 + + def reshape_results(self): + """Remove time dimension from results, if necessary.""" + if self.n_times == 0: + self.con_scores = self.con_scores[..., 0] + if self.patterns is not None: + self.patterns = self.patterns[..., 0] + + +def _mic_mim_compute_t(C, T, n_seeds): + """Compute T for a single frequency (used for MIC and MIM).""" + for time_i in range(C.shape[0]): + T[time_i, :n_seeds, :n_seeds] = sp.linalg.fractional_matrix_power( + C[time_i, :n_seeds, :n_seeds], -0.5 + ) + T[time_i, n_seeds:, n_seeds:] = sp.linalg.fractional_matrix_power( + C[time_i, n_seeds:, n_seeds:], -0.5 + ) + + return T + + +class _MICEst(_MultivariateCohEstBase): + """Multivariate imaginary part of coherency (MIC) estimator.""" + + name = "MIC" + + +class _MIMEst(_MultivariateCohEstBase): + """Multivariate interaction measure (MIM) estimator.""" + + name = "MIM" + + +class _GCEstBase(_EpochMeanMultivariateConEstBase): + """Base multivariate state-space Granger causality estimator.""" + + accumulate_psd = False + + def __init__(self, n_signals, n_cons, n_freqs, n_times, n_lags, n_jobs=1): + super(_GCEstBase, self).__init__( + n_signals, n_cons, n_freqs, n_times, n_jobs) + + self.freq_res = (self.n_freqs - 1) * 2 + if n_lags >= self.freq_res: + raise ValueError( + 'the number of lags (%i) must be less than double the ' + 'frequency resolution (%i)' % (n_lags, self.freq_res, )) + self.n_lags = n_lags + + def compute_con(self, indices, ranks, n_epochs=1): + """Compute multivariate state-space Granger causality.""" + assert self.name in ['GC', 'GC time-reversed'], ( + 'the class name is not recognised, please contact the ' + 'mne-connectivity developers') + + csd = self.reshape_csd() / n_epochs + + n_times = csd.shape[0] + times = np.arange(n_times) + freqs = np.arange(self.n_freqs) + + con_i = 0 + for seed_idcs, target_idcs, seed_rank, target_rank in zip( + indices[0], indices[1], ranks[0], ranks[1]): + self._log_connection_number(con_i) + + seed_idcs = seed_idcs.compressed() + target_idcs = target_idcs.compressed() + con_idcs = [*seed_idcs, *target_idcs] + + C = csd[np.ix_(times, freqs, con_idcs, con_idcs)] + + C_bar = self._csd_svd(C, seed_idcs, seed_rank, target_rank) + n_signals = seed_rank + target_rank + con_seeds = np.arange(seed_rank) + con_targets = np.arange(target_rank) + seed_rank + + autocov = self._compute_autocov(C_bar) + if self.name == "GC time-reversed": + autocov = autocov.transpose(0, 1, 3, 2) + + A_f, V = self._autocov_to_full_var(autocov) + A_f_3d = np.reshape( + A_f, (n_times, n_signals, n_signals * self.n_lags), + order="F") + A, K = self._full_var_to_iss(A_f_3d) + + self.con_scores[con_i] = self._iss_to_ugc( + A, A_f_3d, K, V, con_seeds, con_targets) + + con_i += 1 + + self.reshape_results() + + def _csd_svd(self, csd, seed_idcs, seed_rank, target_rank): + """Dimensionality reduction of CSD with SVD on the covariance.""" + # sum over times and epochs to get cov. from CSD + cov = csd.sum(axis=(0, 1)) + + n_seeds = len(seed_idcs) + n_targets = csd.shape[3] - n_seeds + + cov_aa = cov[:n_seeds, :n_seeds] + cov_bb = cov[n_seeds:, n_seeds:] + + if seed_rank != n_seeds: + U_aa = np.linalg.svd(np.real(cov_aa), full_matrices=False)[0] + U_bar_aa = U_aa[:, :seed_rank] + else: + U_bar_aa = np.identity(n_seeds) + + if target_rank != n_targets: + U_bb = np.linalg.svd(np.real(cov_bb), full_matrices=False)[0] + U_bar_bb = U_bb[:, :target_rank] + else: + U_bar_bb = np.identity(n_targets) + + C_aa = csd[..., :n_seeds, :n_seeds] + C_ab = csd[..., :n_seeds, n_seeds:] + C_bb = csd[..., n_seeds:, n_seeds:] + C_ba = csd[..., n_seeds:, :n_seeds] + + C_bar_aa = np.matmul( + U_bar_aa.transpose(1, 0), np.matmul(C_aa, U_bar_aa)) + C_bar_ab = np.matmul( + U_bar_aa.transpose(1, 0), np.matmul(C_ab, U_bar_bb)) + C_bar_bb = np.matmul( + U_bar_bb.transpose(1, 0), np.matmul(C_bb, U_bar_bb)) + C_bar_ba = np.matmul( + U_bar_bb.transpose(1, 0), np.matmul(C_ba, U_bar_aa)) + C_bar = np.append(np.append(C_bar_aa, C_bar_ab, axis=3), + np.append(C_bar_ba, C_bar_bb, axis=3), axis=2) + + return C_bar + + def _compute_autocov(self, csd): + """Compute autocovariance from the CSD.""" + n_times = csd.shape[0] + n_signals = csd.shape[2] + + circular_shifted_csd = np.concatenate( + [np.flip(np.conj(csd[:, 1:]), axis=1), csd[:, :-1]], axis=1) + ifft_shifted_csd = self._block_ifft( + circular_shifted_csd, self.freq_res) + lags_ifft_shifted_csd = np.reshape( + ifft_shifted_csd[:, :self.n_lags + 1], + (n_times, self.n_lags + 1, n_signals ** 2), order="F") + + signs = np.repeat([1], self.n_lags + 1).tolist() + signs[1::2] = [x * -1 for x in signs[1::2]] + sign_matrix = np.repeat( + np.tile(np.array(signs), (n_signals ** 2, 1))[np.newaxis], + n_times, axis=0).transpose(0, 2, 1) + + return np.real(np.reshape( + sign_matrix * lags_ifft_shifted_csd, + (n_times, self.n_lags + 1, n_signals, n_signals), order="F")) + + def _block_ifft(self, csd, n_points): + """Compute block iFFT with n points.""" + shape = csd.shape + csd_3d = np.reshape( + csd, (shape[0], shape[1], shape[2] * shape[3]), order="F") + + csd_ifft = np.fft.ifft(csd_3d, n=n_points, axis=1) + + return np.reshape(csd_ifft, shape, order="F") + + def _autocov_to_full_var(self, autocov): + """Compute full VAR model using Whittle's LWR recursion.""" + if np.any(np.linalg.det(autocov) == 0): + raise RuntimeError( + 'the autocovariance matrix is singular; check if your data is ' + 'rank deficient and specify an appropriate rank argument <= ' + 'the rank of the seeds and targets') + + A_f, V = self._whittle_lwr_recursion(autocov) + + if not np.isfinite(A_f).all(): + raise RuntimeError('at least one VAR model coefficient is ' + 'infinite or NaN; check the data you are using') + + try: + np.linalg.cholesky(V) + except np.linalg.LinAlgError as np_error: + raise RuntimeError( + 'the covariance matrix of the residuals is not ' + 'positive-definite; check the singular values of your data ' + 'and specify an appropriate rank argument <= the rank of the ' + 'seeds and targets') from np_error + + return A_f, V + + def _whittle_lwr_recursion(self, G): + """Solve Yule-Walker eqs. for full VAR params. with LWR recursion. + + See: Whittle P., 1963. Biometrika, DOI: 10.1093/biomet/50.1-2.129 + """ + # Initialise recursion + n = G.shape[2] # number of signals + q = G.shape[1] - 1 # number of lags + t = G.shape[0] # number of times + qn = n * q + + cov = G[:, 0, :, :] # covariance + G_f = np.reshape( + G[:, 1:, :, :].transpose(0, 3, 1, 2), (t, qn, n), + order="F") # forward autocov + G_b = np.reshape( + np.flip(G[:, 1:, :, :], 1).transpose(0, 3, 2, 1), (t, n, qn), + order="F").transpose(0, 2, 1) # backward autocov + + A_f = np.zeros((t, n, qn)) # forward coefficients + A_b = np.zeros((t, n, qn)) # backward coefficients + + k = 1 # model order + r = q - k + k_f = np.arange(k * n) # forward indices + k_b = np.arange(r * n, qn) # backward indices + + try: + A_f[:, :, k_f] = np.linalg.solve( + cov, G_b[:, k_b, :].transpose(0, 2, 1)).transpose(0, 2, 1) + A_b[:, :, k_b] = np.linalg.solve( + cov, G_f[:, k_f, :].transpose(0, 2, 1)).transpose(0, 2, 1) + + # Perform recursion + for k in np.arange(2, q + 1): + var_A = (G_b[:, (r - 1) * n: r * n, :] - + np.matmul(A_f[:, :, k_f], G_b[:, k_b, :])) + var_B = cov - np.matmul(A_b[:, :, k_b], G_b[:, k_b, :]) + AA_f = np.linalg.solve( + var_B, var_A.transpose(0, 2, 1)).transpose(0, 2, 1) + + var_A = (G_f[:, (k - 1) * n: k * n, :] - + np.matmul(A_b[:, :, k_b], G_f[:, k_f, :])) + var_B = cov - np.matmul(A_f[:, :, k_f], G_f[:, k_f, :]) + AA_b = np.linalg.solve( + var_B, var_A.transpose(0, 2, 1)).transpose(0, 2, 1) + + A_f_previous = A_f[:, :, k_f] + A_b_previous = A_b[:, :, k_b] + + r = q - k + k_f = np.arange(k * n) + k_b = np.arange(r * n, qn) + + A_f[:, :, k_f] = np.dstack( + (A_f_previous - np.matmul(AA_f, A_b_previous), AA_f)) + A_b[:, :, k_b] = np.dstack( + (AA_b, A_b_previous - np.matmul(AA_b, A_f_previous))) + except np.linalg.LinAlgError as np_error: + raise RuntimeError( + 'the autocovariance matrix is singular; check if your data is ' + 'rank deficient and specify an appropriate rank argument <= ' + 'the rank of the seeds and targets') from np_error + + V = cov - np.matmul(A_f, G_f) + A_f = np.reshape(A_f, (t, n, n, q), order="F") + + return A_f, V + + def _full_var_to_iss(self, A_f): + """Compute innovations-form parameters for a state-space model. + + Parameters computed from a full VAR model using Aoki's method. For a + non-moving-average full VAR model, the state-space parameter C + (observation matrix) is identical to AF of the VAR model. + + See: Barnett, L. & Seth, A.K., 2015, Physical Review, DOI: + 10.1103/PhysRevE.91.040101. + """ + t = A_f.shape[0] + m = A_f.shape[1] # number of signals + p = A_f.shape[2] // m # number of autoregressive lags + + I_p = np.dstack(t * [np.eye(m * p)]).transpose(2, 0, 1) + A = np.hstack((A_f, I_p[:, : (m * p - m), :])) # state transition + # matrix + K = np.hstack(( + np.dstack(t * [np.eye(m)]).transpose(2, 0, 1), + np.zeros((t, (m * (p - 1)), m)))) # Kalman gain matrix + + return A, K + + def _iss_to_ugc(self, A, C, K, V, seeds, targets): + """Compute unconditional GC from innovations-form state-space params. + + See: Barnett, L. & Seth, A.K., 2015, Physical Review, DOI: + 10.1103/PhysRevE.91.040101. + """ + times = np.arange(A.shape[0]) + freqs = np.arange(self.n_freqs) + z = np.exp(-1j * np.pi * np.linspace(0, 1, self.n_freqs)) # points + # on a unit circle in the complex plane, one for each frequency + + H = self._iss_to_tf(A, C, K, z) # spectral transfer function + V_22_1 = np.linalg.cholesky(self._partial_covar(V, seeds, targets)) + HV = np.matmul(H, np.linalg.cholesky(V)) + S = np.matmul(HV, HV.conj().transpose(0, 1, 3, 2)) # Eq. 6 + S_11 = S[np.ix_(freqs, times, targets, targets)] + HV_12 = np.matmul(H[np.ix_(freqs, times, targets, seeds)], V_22_1) + HVH = np.matmul(HV_12, HV_12.conj().transpose(0, 1, 3, 2)) + + # Eq. 11 + return np.real( + np.log(np.linalg.det(S_11)) - np.log(np.linalg.det(S_11 - HVH))) + + def _iss_to_tf(self, A, C, K, z): + """Compute transfer function for innovations-form state-space params. + + In the frequency domain, the back-shift operator, z, is a vector of + points on a unit circle in the complex plane. z = e^-iw, where -pi < w + <= pi. + + A note on efficiency: solving over the 4D time-freq. tensor is slower + than looping over times and freqs when n_times and n_freqs high, and + when n_times and n_freqs low, looping over times and freqs very fast + anyway (plus tensor solving doesn't allow for parallelisation). + + See: Barnett, L. & Seth, A.K., 2015, Physical Review, DOI: + 10.1103/PhysRevE.91.040101. + """ + t = A.shape[0] + h = self.n_freqs + n = C.shape[1] + m = A.shape[1] + I_n = np.eye(n) + I_m = np.eye(m) + H = np.zeros((h, t, n, n), dtype=np.complex128) + + parallel, parallel_compute_H, _ = parallel_func( + _gc_compute_H, self.n_jobs, verbose=False + ) + H = np.zeros((h, t, n, n), dtype=np.complex128) + for block_i in ProgressBar( + range(self.n_steps), mesg="frequency blocks" + ): + freqs = self._get_block_indices(block_i, self.n_freqs) + H[freqs] = parallel( + parallel_compute_H(A, C, K, z[k], I_n, I_m) for k in freqs) + + return H + + def _partial_covar(self, V, seeds, targets): + """Compute partial covariance of a matrix. + + Given a covariance matrix V, the partial covariance matrix of V between + indices i and j, given k (V_ij|k), is equivalent to V_ij - V_ik * + V_kk^-1 * V_kj. In this case, i and j are seeds, and k are targets. + + See: Barnett, L. & Seth, A.K., 2015, Physical Review, DOI: + 10.1103/PhysRevE.91.040101. + """ + times = np.arange(V.shape[0]) + W = np.linalg.solve( + np.linalg.cholesky(V[np.ix_(times, targets, targets)]), + V[np.ix_(times, targets, seeds)], + ) + W = np.matmul(W.transpose(0, 2, 1), W) + + return V[np.ix_(times, seeds, seeds)] - W + + def reshape_results(self): + """Remove time dimension from con. scores, if necessary.""" + if self.n_times == 0: + self.con_scores = self.con_scores[:, :, 0] + + +def _gc_compute_H(A, C, K, z_k, I_n, I_m): + """Compute transfer function for innovations-form state-space params. + + See: Barnett, L. & Seth, A.K., 2015, Physical Review, DOI: + 10.1103/PhysRevE.91.040101, Eq. 4. + """ + from scipy import linalg # XXX: is this necessary??? + H = np.zeros((A.shape[0], C.shape[1], C.shape[1]), dtype=np.complex128) + for t in range(A.shape[0]): + H[t] = I_n + np.matmul( + C[t], linalg.lu_solve(linalg.lu_factor(z_k * I_m - A[t]), K[t])) + + return H + + +class _GCEst(_GCEstBase): + """[seeds -> targets] state-space GC estimator.""" + + name = "GC" + + +class _GCTREst(_GCEstBase): + """time-reversed[seeds -> targets] state-space GC estimator.""" + + name = "GC time-reversed" + + +# map names to estimator types +_CON_METHOD_MAP_MULTIVARIATE = { + 'mic': _MICEst, 'mim': _MIMEst, 'gc': _GCEst, 'gc_tr': _GCTREst +} + +_multivariate_methods = ['mic', 'mim', 'gc', 'gc_tr'] +_gc_methods = ['gc', 'gc_tr'] diff --git a/mne_connectivity/spectral/tests/test_spectral.py b/mne_connectivity/spectral/tests/test_spectral.py index a514382b..eea3bc04 100644 --- a/mne_connectivity/spectral/tests/test_spectral.py +++ b/mne_connectivity/spectral/tests/test_spectral.py @@ -10,9 +10,10 @@ from mne_connectivity import ( SpectralConnectivity, spectral_connectivity_epochs, read_connectivity, spectral_connectivity_time) -from mne_connectivity.spectral.epochs import _CohEst, _get_n_epochs -from mne_connectivity.spectral.epochs import ( - _compute_freq_mask, _compute_freqs) +from mne_connectivity.spectral.epochs import (_get_n_epochs, + _compute_freq_mask, + _compute_freqs) +from mne_connectivity.spectral.epochs_bivariate import _CohEst def create_test_dataset(sfreq, n_signals, n_epochs, n_times, tmin, tmax, diff --git a/mne_connectivity/spectral/time.py b/mne_connectivity/spectral/time.py index 07dc4e57..54d0acf1 100644 --- a/mne_connectivity/spectral/time.py +++ b/mne_connectivity/spectral/time.py @@ -13,16 +13,14 @@ from mne.utils import (logger, verbose) from ..base import (SpectralConnectivity, EpochSpectralConnectivity) -from .epochs import (_MICEst, _MIMEst, _GCEst, _GCTREst, _compute_freq_mask, - _check_rank_input) +from .epochs import _compute_freq_mask +from .epochs_multivariate import (_CON_METHOD_MAP_MULTIVARIATE, + _check_rank_input, _multivariate_methods, + _gc_methods) from .smooth import _create_kernel, _smooth_spectra from ..utils import check_indices, _check_multivariate_indices, fill_doc -_multivariate_methods = ['mic', 'mim', 'gc', 'gc_tr'] -_gc_methods = ['gc', 'gc_tr'] - - @verbose @fill_doc def spectral_connectivity_time(data, freqs, method='coh', average=False, @@ -913,8 +911,6 @@ def _multivariate_con(w, seeds, targets, signals_use, method, kernel, foi_idx, csd = np.array(csd) # initialise connectivity estimators and add CSD information - conn_class = {'mic': _MICEst, 'mim': _MIMEst, 'gc': _GCEst, - 'gc_tr': _GCTREst} conn = [] for m in method: call_params = {'n_signals': len(signals_use), 'n_cons': len(seeds), @@ -922,7 +918,7 @@ def _multivariate_con(w, seeds, targets, signals_use, method, kernel, foi_idx, 'n_jobs': n_jobs} if m in _gc_methods: call_params['n_lags'] = gc_n_lags - con_est = conn_class[m](**call_params) + con_est = _CON_METHOD_MAP_MULTIVARIATE[m](**call_params) for con_i, con_csd in enumerate(csd): con_est.accumulate(con_i, con_csd) conn.append(con_est)