diff --git a/StateSpace/FMI3.xml b/StateSpace/FMI3.xml
index 3eba264c..3188c42a 100644
--- a/StateSpace/FMI3.xml
+++ b/StateSpace/FMI3.xml
@@ -5,72 +5,72 @@
generationTool="Reference FMUs (development build)"
instantiationToken="{D773325B-AB94-4630-BF85-643EB24FCB78}">
-
+
-
+
-
-
-
-
+
+
+
+
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
+
+
+
+
+
+
+
diff --git a/StateSpace/model.c b/StateSpace/model.c
index 856bb1ec..e5d2ca9b 100644
--- a/StateSpace/model.c
+++ b/StateSpace/model.c
@@ -36,9 +36,9 @@ Status calculateValues(ModelInstance *comp) {
// der(x) = Ax + Bu
for (size_t i = 0; i < M(n); i++) {
-
+
M(der_x)[i] = 0;
-
+
for (size_t j = 0; j < M(n); j++) {
M(der_x)[i] += M(A)[i][j] * M(x)[j];
}
@@ -56,7 +56,7 @@ Status calculateValues(ModelInstance *comp) {
for (size_t i = 0; i < M(r); i++) {
M(y)[i] = 0;
-
+
for (size_t j = 0; j < M(n); j++) {
M(y)[i] += M(C)[i][j] * M(x)[j];
}
@@ -282,9 +282,9 @@ size_t getNumberOfContinuousStates(ModelInstance* comp) {
}
void getContinuousStates(ModelInstance* comp, double x[], size_t nx) {
-
+
// TODO: assert nx == M(n)
-
+
UNUSED(nx);
for (size_t i = 0; i < M(n); i++) {
@@ -293,7 +293,7 @@ void getContinuousStates(ModelInstance* comp, double x[], size_t nx) {
}
void setContinuousStates(ModelInstance* comp, const double x[], size_t nx) {
-
+
// TODO: assert nx == M(n)
UNUSED(nx);
@@ -314,4 +314,4 @@ void getDerivatives(ModelInstance* comp, double dx[], size_t nx) {
for (size_t i = 0; i < M(n); i++) {
dx[i] = M(der_x)[i];
}
-}
\ No newline at end of file
+}
diff --git a/StateSpace/readme.md b/StateSpace/readme.md
index 5d87207f..870ff4d5 100644
--- a/StateSpace/readme.md
+++ b/StateSpace/readme.md
@@ -3,16 +3,16 @@
The StateSpace model implements the equation
```
-Ẋ = Ax + Bu
-y = Cx + Du
+der(x) = Ax + Bu
+ y = Cx + Du
```
-where
+where
-- `A` is an `n×n` matrix, where `n` is the number of states,
-- `B` is an `n×m` matrix, where `m` is the number of inputs,
-- `C` is an `r×n` matrix, where `r` is the number of outputs,
-- `D` is an `r×m` matrix, and
+- `A` is an `n` by `n` matrix, where `n` is the number of states,
+- `B` is an `n` by `m` matrix, where `m` is the number of inputs,
+- `C` is an `r` by `n` matrix, where `r` is the number of outputs,
+- `D` is an `r` by `m` matrix, and
- `x0` is the initial value of `x`