You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
2023-06-08 14:43:53,296 - INFO - modelscope - Checkpoints will be saved to NER/koubei/230608144347.471030
2023-06-08 14:43:53,296 - INFO - adaseq.training.hooks.text_logger_hook - Text logs will be saved to: NER/koubei/230608144347.471030/metrics.json
2023-06-08 14:43:53,369 - INFO - modelscope - tensorboard files will be saved to NER/koubei/230608144347.471030/tensorboard_output
/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/modules/decoders/crf.py:293: UserWarning: where received a uint8 condition tensor. This behavior is deprecated and will be removed in a future version of PyTorch. Use a boolean condition instead. (Triggered internally at ../aten/src/ATen/native/TensorCompare.cpp:402.)
score = torch.where(mask[i].unsqueeze(1), next_score, score)
2023-06-08 14:44:00,504 - INFO - modelscope - epoch [1][50/478] lr: 5.000e-05, eta: 0:05:33, iter_time: 0.143, data_load_time: 0.013, memory: 2636, loss: 24.8958
2023-06-08 14:44:05,806 - INFO - modelscope - epoch [1][100/478] lr: 5.000e-05, eta: 0:04:44, iter_time: 0.106, data_load_time: 0.011, memory: 2689, loss: 6.3790
2023-06-08 14:44:11,301 - INFO - modelscope - epoch [1][150/478] lr: 5.000e-05, eta: 0:04:27, iter_time: 0.110, data_load_time: 0.012, memory: 2689, loss: 4.3439
2023-06-08 14:44:16,351 - INFO - modelscope - epoch [1][200/478] lr: 5.000e-05, eta: 0:04:11, iter_time: 0.101, data_load_time: 0.012, memory: 2689, loss: 3.1956
2023-06-08 14:44:22,130 - INFO - modelscope - epoch [1][250/478] lr: 5.000e-05, eta: 0:04:06, iter_time: 0.116, data_load_time: 0.014, memory: 2800, loss: 3.9149
2023-06-08 14:44:28,207 - INFO - modelscope - epoch [1][300/478] lr: 5.000e-05, eta: 0:04:02, iter_time: 0.122, data_load_time: 0.015, memory: 2800, loss: 3.5845
2023-06-08 14:44:33,858 - INFO - modelscope - epoch [1][350/478] lr: 5.000e-05, eta: 0:03:55, iter_time: 0.113, data_load_time: 0.014, memory: 2800, loss: 2.7284
2023-06-08 14:44:38,887 - INFO - modelscope - epoch [1][400/478] lr: 5.000e-05, eta: 0:03:46, iter_time: 0.101, data_load_time: 0.012, memory: 2800, loss: 2.6073
2023-06-08 14:44:44,202 - INFO - modelscope - epoch [1][450/478] lr: 5.000e-05, eta: 0:03:39, iter_time: 0.106, data_load_time: 0.012, memory: 2800, loss: 2.7159
Total test samples: 0%|▏ | 1/463 [00:00<00:46, 9.89it/sTotal test samples: 4%|███▏ | 17/463 [00:00<00:14, 30.77iTotal test samples: 11%|█████████▎ | 49/463 [00:00<00:04, Total test samples: 17%|███████████████▏ | 81/463 [00:00<00Total test samples: 24%|████████████████████▉ | 113/463 [00:Total test samples: 31%|██████████████████████████▉ | 145/46Total test samples: 38%|████████████████████████████████▉ | Total test samples: 45%|██████████████████████████████████████▊ Total test samples: 52%|████████████████████████████████████████████▊ Total test samples: 62%|█████████████████████████████████████████████████████▋ Total test samples: 69%|███████████████████████████████████████████████████████████▌ Total test samples: 76%|████████████████████████████████████████████████████████████Total test samples: 87%|████████████████████████████████████████████████████████████Total test samples: 97%|████████████████████████████████████████████████████████████Total test samples: 100%|██████████████████████████████████████████████████████████████████████████████████████| 463/463 [00:02<00:00, 227.71it/s]
Traceback (most recent call last):
File "/data/ningfeim/.myconda/envs/modelscope/bin/adaseq", line 8, in
sys.exit(run())
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/main.py", line 13, in run
main(prog='adaseq')
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/commands/init.py", line 29, in main
args.func(args)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/commands/train.py", line 85, in train_model_from_args
checkpoint_path=args.checkpoint_path,
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/commands/train.py", line 144, in train_model
trainer.train(checkpoint_path)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/training/default_trainer.py", line 146, in train
return super().train(checkpoint_path=checkpoint_path, *args, **kwargs)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/trainer.py", line 676, in train
self.train_loop(self.train_dataloader)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/trainer.py", line 1181, in train_loop
self.invoke_hook(TrainerStages.after_train_epoch)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/trainer.py", line 1328, in invoke_hook
getattr(hook, fn_name)(self)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/hooks/evaluation_hook.py", line 35, in after_train_epoch
self.do_evaluate(trainer)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/hooks/evaluation_hook.py", line 47, in do_evaluate
eval_res = trainer.evaluate()
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/trainer.py", line 764, in evaluate
metric_classes)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/trainer.py", line 1239, in evaluation_loop
data_loader_iters=self._eval_iters_per_epoch)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/utils/inference.py", line 77, in single_gpu_test
return get_metric_values(metric_classes)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/utils/inference.py", line 194, in get_metric_values
metric_values.update(metric_cls.evaluate())
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/data/dataset_dumpers/base.py", line 26, in evaluate
self.dump()
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/data/dataset_dumpers/named_entity_recognition_dataset_dumper.py", line 40, in dump
raise NotImplementedError
NotImplementedError
Is your feature request related to a problem?
2023-06-08 14:43:53,296 - INFO - modelscope - Checkpoints will be saved to NER/koubei/230608144347.471030
2023-06-08 14:43:53,296 - INFO - adaseq.training.hooks.text_logger_hook - Text logs will be saved to: NER/koubei/230608144347.471030/metrics.json
2023-06-08 14:43:53,369 - INFO - modelscope - tensorboard files will be saved to NER/koubei/230608144347.471030/tensorboard_output
/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/modules/decoders/crf.py:293: UserWarning: where received a uint8 condition tensor. This behavior is deprecated and will be removed in a future version of PyTorch. Use a boolean condition instead. (Triggered internally at ../aten/src/ATen/native/TensorCompare.cpp:402.)
score = torch.where(mask[i].unsqueeze(1), next_score, score)
2023-06-08 14:44:00,504 - INFO - modelscope - epoch [1][50/478] lr: 5.000e-05, eta: 0:05:33, iter_time: 0.143, data_load_time: 0.013, memory: 2636, loss: 24.8958
2023-06-08 14:44:05,806 - INFO - modelscope - epoch [1][100/478] lr: 5.000e-05, eta: 0:04:44, iter_time: 0.106, data_load_time: 0.011, memory: 2689, loss: 6.3790
2023-06-08 14:44:11,301 - INFO - modelscope - epoch [1][150/478] lr: 5.000e-05, eta: 0:04:27, iter_time: 0.110, data_load_time: 0.012, memory: 2689, loss: 4.3439
2023-06-08 14:44:16,351 - INFO - modelscope - epoch [1][200/478] lr: 5.000e-05, eta: 0:04:11, iter_time: 0.101, data_load_time: 0.012, memory: 2689, loss: 3.1956
2023-06-08 14:44:22,130 - INFO - modelscope - epoch [1][250/478] lr: 5.000e-05, eta: 0:04:06, iter_time: 0.116, data_load_time: 0.014, memory: 2800, loss: 3.9149
2023-06-08 14:44:28,207 - INFO - modelscope - epoch [1][300/478] lr: 5.000e-05, eta: 0:04:02, iter_time: 0.122, data_load_time: 0.015, memory: 2800, loss: 3.5845
2023-06-08 14:44:33,858 - INFO - modelscope - epoch [1][350/478] lr: 5.000e-05, eta: 0:03:55, iter_time: 0.113, data_load_time: 0.014, memory: 2800, loss: 2.7284
2023-06-08 14:44:38,887 - INFO - modelscope - epoch [1][400/478] lr: 5.000e-05, eta: 0:03:46, iter_time: 0.101, data_load_time: 0.012, memory: 2800, loss: 2.6073
2023-06-08 14:44:44,202 - INFO - modelscope - epoch [1][450/478] lr: 5.000e-05, eta: 0:03:39, iter_time: 0.106, data_load_time: 0.012, memory: 2800, loss: 2.7159
Total test samples: 0%|▏ | 1/463 [00:00<00:46, 9.89it/sTotal test samples: 4%|███▏ | 17/463 [00:00<00:14, 30.77iTotal test samples: 11%|█████████▎ | 49/463 [00:00<00:04, Total test samples: 17%|███████████████▏ | 81/463 [00:00<00Total test samples: 24%|████████████████████▉ | 113/463 [00:Total test samples: 31%|██████████████████████████▉ | 145/46Total test samples: 38%|████████████████████████████████▉ | Total test samples: 45%|██████████████████████████████████████▊ Total test samples: 52%|████████████████████████████████████████████▊ Total test samples: 62%|█████████████████████████████████████████████████████▋ Total test samples: 69%|███████████████████████████████████████████████████████████▌ Total test samples: 76%|████████████████████████████████████████████████████████████Total test samples: 87%|████████████████████████████████████████████████████████████Total test samples: 97%|████████████████████████████████████████████████████████████Total test samples: 100%|██████████████████████████████████████████████████████████████████████████████████████| 463/463 [00:02<00:00, 227.71it/s]
Traceback (most recent call last):
File "/data/ningfeim/.myconda/envs/modelscope/bin/adaseq", line 8, in
sys.exit(run())
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/main.py", line 13, in run
main(prog='adaseq')
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/commands/init.py", line 29, in main
args.func(args)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/commands/train.py", line 85, in train_model_from_args
checkpoint_path=args.checkpoint_path,
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/commands/train.py", line 144, in train_model
trainer.train(checkpoint_path)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/training/default_trainer.py", line 146, in train
return super().train(checkpoint_path=checkpoint_path, *args, **kwargs)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/trainer.py", line 676, in train
self.train_loop(self.train_dataloader)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/trainer.py", line 1181, in train_loop
self.invoke_hook(TrainerStages.after_train_epoch)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/trainer.py", line 1328, in invoke_hook
getattr(hook, fn_name)(self)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/hooks/evaluation_hook.py", line 35, in after_train_epoch
self.do_evaluate(trainer)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/hooks/evaluation_hook.py", line 47, in do_evaluate
eval_res = trainer.evaluate()
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/trainer.py", line 764, in evaluate
metric_classes)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/trainer.py", line 1239, in evaluation_loop
data_loader_iters=self._eval_iters_per_epoch)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/utils/inference.py", line 77, in single_gpu_test
return get_metric_values(metric_classes)
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/modelscope/trainers/utils/inference.py", line 194, in get_metric_values
metric_values.update(metric_cls.evaluate())
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/data/dataset_dumpers/base.py", line 26, in evaluate
self.dump()
File "/data/ningfeim/.myconda/envs/modelscope/lib/python3.7/site-packages/adaseq/data/dataset_dumpers/named_entity_recognition_dataset_dumper.py", line 40, in dump
raise NotImplementedError
NotImplementedError
环境:
python3.7
ubuntu 22.04
cuda11.7
Name Version Build Channel
_libgcc_mutex 0.1 main
_openmp_mutex 5.1 1_gnu
absl-py 1.4.0 pypi_0 pypi
adaseq 0.6.2 pypi_0 pypi
addict 2.4.0 pypi_0 pypi
aiohttp 3.8.4 pypi_0 pypi
aiosignal 1.3.1 pypi_0 pypi
albumentations 1.3.0 pypi_0 pypi
aliyun-python-sdk-core 2.13.36 pypi_0 pypi
aliyun-python-sdk-kms 2.16.0 pypi_0 pypi
apex 0.1 pypi_0 pypi
async-timeout 4.0.2 pypi_0 pypi
asynctest 0.13.0 pypi_0 pypi
attrs 22.2.0 pypi_0 pypi
beautifulsoup4 4.11.2 pypi_0 pypi
blis 0.7.9 pypi_0 pypi
boto3 1.26.89 pypi_0 pypi
botocore 1.29.89 pypi_0 pypi
bs4 0.0.1 pypi_0 pypi
ca-certificates 2023.01.10 h06a4308_0
cachetools 5.3.0 pypi_0 pypi
catalogue 2.0.8 pypi_0 pypi
certifi 2022.12.7 py37h06a4308_0
cffi 1.15.1 pypi_0 pypi
charset-normalizer 3.1.0 pypi_0 pypi
click 8.1.3 pypi_0 pypi
confection 0.0.4 pypi_0 pypi
crcmod 1.7 pypi_0 pypi
cryptography 39.0.2 pypi_0 pypi
cycler 0.11.0 pypi_0 pypi
cymem 2.0.7 pypi_0 pypi
datasets 2.8.0 pypi_0 pypi
deepspeed 0.8.2 pypi_0 pypi
dill 0.3.6 pypi_0 pypi
einops 0.6.0 pypi_0 pypi
en-core-web-sm 3.5.0 pypi_0 pypi
filelock 3.9.0 pypi_0 pypi
fonttools 4.38.0 pypi_0 pypi
frozenlist 1.3.3 pypi_0 pypi
fsspec 2023.1.0 pypi_0 pypi
ftfy 6.1.1 pypi_0 pypi
gast 0.5.3 pypi_0 pypi
google-auth 2.16.2 pypi_0 pypi
google-auth-oauthlib 0.4.6 pypi_0 pypi
grpcio 1.52.0 pypi_0 pypi
hjson 3.1.0 pypi_0 pypi
huggingface-hub 0.13.1 pypi_0 pypi
idna 3.4 pypi_0 pypi
imageio 2.26.0 pypi_0 pypi
importlib-metadata 6.0.0 pypi_0 pypi
jieba 0.42.1 pypi_0 pypi
jinja2 3.1.2 pypi_0 pypi
jmespath 0.10.0 pypi_0 pypi
joblib 1.2.0 pypi_0 pypi
jsonplus 0.8.0 pypi_0 pypi
kiwisolver 1.4.4 pypi_0 pypi
langcodes 3.3.0 pypi_0 pypi
ld_impl_linux-64 2.38 h1181459_1
libffi 3.4.2 h6a678d5_6
libgcc-ng 11.2.0 h1234567_1
libgomp 11.2.0 h1234567_1
libstdcxx-ng 11.2.0 h1234567_1
markdown 3.4.1 pypi_0 pypi
markupsafe 2.1.2 pypi_0 pypi
matplotlib 3.5.3 pypi_0 pypi
megatron-util 1.3.1 pypi_0 pypi
mmdet 2.28.2 pypi_0 pypi
mock 5.0.1 pypi_0 pypi
modelscope 1.4.2 pypi_0 pypi
multidict 6.0.4 pypi_0 pypi
multiprocess 0.70.14 pypi_0 pypi
murmurhash 1.0.9 pypi_0 pypi
ncurses 6.4 h6a678d5_0
networkx 2.6.3 pypi_0 pypi
ninja 1.11.1 pypi_0 pypi
nltk 3.8.1 pypi_0 pypi
numpy 1.21.6 pypi_0 pypi
nvidia-cublas-cu11 11.10.3.66 pypi_0 pypi
nvidia-cuda-nvrtc-cu11 11.7.99 pypi_0 pypi
nvidia-cuda-runtime-cu11 11.7.99 pypi_0 pypi
nvidia-cudnn-cu11 8.5.0.96 pypi_0 pypi
oauthlib 3.2.2 pypi_0 pypi
opencv-python-headless 4.7.0.72 pypi_0 pypi
openssl 1.1.1t h7f8727e_0
oss2 2.17.0 pypi_0 pypi
packaging 23.0 pypi_0 pypi
pai-easynlp 0.0.7 pypi_0 pypi
pandas 1.3.5 pypi_0 pypi
pathy 0.10.1 pypi_0 pypi
pillow 9.4.0 pypi_0 pypi
pip 22.3.1 py37h06a4308_0
preshed 3.0.8 pypi_0 pypi
protobuf 3.19.0 pypi_0 pypi
psutil 5.9.4 pypi_0 pypi
py-cpuinfo 9.0.0 pypi_0 pypi
pyarrow 11.0.0 pypi_0 pypi
pyasn1 0.4.8 pypi_0 pypi
pyasn1-modules 0.2.8 pypi_0 pypi
pycocotools 2.0.6 pypi_0 pypi
pycparser 2.21 pypi_0 pypi
pycryptodome 3.17 pypi_0 pypi
pydantic 1.10.6 pypi_0 pypi
pymysql 1.0.2 pypi_0 pypi
pyparsing 3.0.9 pypi_0 pypi
pythainlp 3.1.1 pypi_0 pypi
python 3.7.16 h7a1cb2a_0
python-crfsuite 0.9.9 pypi_0 pypi
python-dateutil 2.8.2 pypi_0 pypi
pytz 2022.7.1 pypi_0 pypi
pyvi 0.1.1 pypi_0 pypi
pywavelets 1.4.0 pypi_0 pypi
pyyaml 6.0 pypi_0 pypi
qudida 0.0.4 pypi_0 pypi
readline 8.2 h5eee18b_0
regex 2022.10.31 pypi_0 pypi
requests 2.28.2 pypi_0 pypi
requests-oauthlib 1.3.1 pypi_0 pypi
responses 0.18.0 pypi_0 pypi
rouge 1.0.1 pypi_0 pypi
rsa 4.9 pypi_0 pypi
s3transfer 0.6.0 pypi_0 pypi
sacremoses 0.0.53 pypi_0 pypi
scikit-image 0.19.3 pypi_0 pypi
scikit-learn 1.0.2 pypi_0 pypi
scipy 1.7.3 pypi_0 pypi
sentencepiece 0.1.97 pypi_0 pypi
seqeval 1.2.2 pypi_0 pypi
setuptools 59.8.0 pypi_0 pypi
simplejson 3.18.3 pypi_0 pypi
six 1.16.0 pypi_0 pypi
sklearn-crfsuite 0.3.6 pypi_0 pypi
smart-open 6.3.0 pypi_0 pypi
sortedcontainers 2.4.0 pypi_0 pypi
soupsieve 2.4 pypi_0 pypi
spacy 3.5.1 pypi_0 pypi
spacy-legacy 3.0.12 pypi_0 pypi
spacy-loggers 1.0.4 pypi_0 pypi
sqlite 3.40.1 h5082296_0
srsly 2.4.6 pypi_0 pypi
subword-nmt 0.3.8 pypi_0 pypi
tabulate 0.9.0 pypi_0 pypi
tensorboard 2.11.2 pypi_0 pypi
tensorboard-data-server 0.6.1 pypi_0 pypi
tensorboard-plugin-wit 1.8.1 pypi_0 pypi
termcolor 2.2.0 pypi_0 pypi
terminaltables 3.1.10 pypi_0 pypi
thinc 8.1.9 pypi_0 pypi
threadpoolctl 3.1.0 pypi_0 pypi
tifffile 2021.11.2 pypi_0 pypi
tk 8.6.12 h1ccaba5_0
tokenizers 0.13.2 pypi_0 pypi
torch 1.12.1+cu113 pypi_0 pypi
torchvision 0.14.1 pypi_0 pypi
tornado 6.2 pypi_0 pypi
tqdm 4.65.0 pypi_0 pypi
transformers 4.26.1 pypi_0 pypi
typer 0.7.0 pypi_0 pypi
typing-extensions 4.4.0 pypi_0 pypi
urllib3 1.26.15 pypi_0 pypi
wasabi 1.1.1 pypi_0 pypi
wcwidth 0.2.6 pypi_0 pypi
werkzeug 2.2.3 pypi_0 pypi
wheel 0.38.4 py37h06a4308_0
xxhash 3.2.0 pypi_0 pypi
xz 5.2.10 h5eee18b_1
yapf 0.32.0 pypi_0 pypi
yarl 1.8.2 pypi_0 pypi
zhconv 1.4.3 pypi_0 pypi
zipp 3.15.0 pypi_0 pypi
zlib 1.2.13 h5eee18b_0
Describe the solution you'd like.
最后一行依赖对应报错行:
这块是在判断训练集类型conll
yaml训练内如下:
experiment:
exp_dir: NER/ # 所有实验的根文件夹
exp_name: koubei # 本次配置文件的实验名称
seed: 42 # 随机种子
dataset:
data_file: # 数据文件
train: '/data/ningfeim/test/NER/koubei/datas/train.txt'
dev: '/data/ningfeim/test/NER/koubei/datas/dev.txt'
test: '/data/ningfeim/test/NER/koubei/datas/test.txt'
data_type: conll # 数据格式
task: named-entity-recognition # 任务名称,用于加载内建的 DatasetBuilder(如果需要的话)
preprocessor:
type: sequence-labeling-preprocessor # 预处理器名称
model_dir: /data/ningfeim/project/Bert-ner-yiwei/bert #huggingface/modelscope 模型名字或路径,用于初始化 Tokenizer,可缺省
max_length: 512 # 预训练模型支持的最大输入长度
data_collator: SequenceLabelingDataCollatorWithPadding # 用于 batch 转换的 data_collator 名称
model:
type: sequence-labeling-model # 模型名称
embedder:
model_name_or_path: /data/ningfeim/test/NER/koubei/nlp_raner_named-entity-recognition_chinese-base-news # 预训练模型名称或路径,可以是huggingface/modelscope的backbone模型,或者也可以加载modelscope上的任务模型
dropout: 0.1 # dropout 概率
use_crf: true # 是否使用CRF
train:
hooks:
- type: TensorboardHook
max_epochs: 5 # 最大训练轮数
dataloader:
batch_size_per_gpu: 8 # 训练batch_size
optimizer:
type: AdamW # pytorch 优化器名称
lr: 5.0e-5 # 全局学习率
param_groups:
- regex: crf
lr: 5.0e-1
lr_scheduler:
type: LinearLR # transformers 或 pytorch 的 lr_scheduler 名称
start_factor: 1.0
end_factor: 0.0
total_iters: 20
evaluation:
dataloader:
batch_size_per_gpu: 16 # 评估batch_size
metrics:
- type: ner-metric # 所有已实现的metric见
adaseq/metainfo.py
的Metrics
类。- type: ner-dumper # 输出预测结果
model_type: sequence_labeling
dump_format: column
Describe alternatives you've considered.
No response
Additional context.
No response
Code of Conduct
The text was updated successfully, but these errors were encountered: