|
| 1 | +import torch, copy |
| 2 | +from ..models.utils import init_weights_on_device |
| 3 | + |
| 4 | + |
| 5 | +def cast_to(weight, dtype, device): |
| 6 | + r = torch.empty_like(weight, dtype=dtype, device=device) |
| 7 | + r.copy_(weight) |
| 8 | + return r |
| 9 | + |
| 10 | + |
| 11 | +class AutoWrappedModule(torch.nn.Module): |
| 12 | + def __init__(self, module: torch.nn.Module, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device): |
| 13 | + super().__init__() |
| 14 | + self.module = module.to(dtype=offload_dtype, device=offload_device) |
| 15 | + self.offload_dtype = offload_dtype |
| 16 | + self.offload_device = offload_device |
| 17 | + self.onload_dtype = onload_dtype |
| 18 | + self.onload_device = onload_device |
| 19 | + self.computation_dtype = computation_dtype |
| 20 | + self.computation_device = computation_device |
| 21 | + self.state = 0 |
| 22 | + |
| 23 | + def offload(self): |
| 24 | + if self.state == 1 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): |
| 25 | + self.module.to(dtype=self.offload_dtype, device=self.offload_device) |
| 26 | + self.state = 0 |
| 27 | + |
| 28 | + def onload(self): |
| 29 | + if self.state == 0 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): |
| 30 | + self.module.to(dtype=self.onload_dtype, device=self.onload_device) |
| 31 | + self.state = 1 |
| 32 | + |
| 33 | + def forward(self, *args, **kwargs): |
| 34 | + if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device: |
| 35 | + module = self.module |
| 36 | + else: |
| 37 | + module = copy.deepcopy(self.module).to(dtype=self.computation_dtype, device=self.computation_device) |
| 38 | + return module(*args, **kwargs) |
| 39 | + |
| 40 | + |
| 41 | +class AutoWrappedLinear(torch.nn.Linear): |
| 42 | + def __init__(self, module: torch.nn.Linear, offload_dtype, offload_device, onload_dtype, onload_device, computation_dtype, computation_device): |
| 43 | + with init_weights_on_device(device=torch.device("meta")): |
| 44 | + super().__init__(in_features=module.in_features, out_features=module.out_features, bias=module.bias is not None, dtype=offload_dtype, device=offload_device) |
| 45 | + self.weight = module.weight |
| 46 | + self.bias = module.bias |
| 47 | + self.offload_dtype = offload_dtype |
| 48 | + self.offload_device = offload_device |
| 49 | + self.onload_dtype = onload_dtype |
| 50 | + self.onload_device = onload_device |
| 51 | + self.computation_dtype = computation_dtype |
| 52 | + self.computation_device = computation_device |
| 53 | + self.state = 0 |
| 54 | + |
| 55 | + def offload(self): |
| 56 | + if self.state == 1 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): |
| 57 | + self.to(dtype=self.offload_dtype, device=self.offload_device) |
| 58 | + self.state = 0 |
| 59 | + |
| 60 | + def onload(self): |
| 61 | + if self.state == 0 and (self.offload_dtype != self.onload_dtype or self.offload_device != self.onload_device): |
| 62 | + self.to(dtype=self.onload_dtype, device=self.onload_device) |
| 63 | + self.state = 1 |
| 64 | + |
| 65 | + def forward(self, x, *args, **kwargs): |
| 66 | + if self.onload_dtype == self.computation_dtype and self.onload_device == self.computation_device: |
| 67 | + weight, bias = self.weight, self.bias |
| 68 | + else: |
| 69 | + weight = cast_to(self.weight, self.computation_dtype, self.computation_device) |
| 70 | + bias = None if self.bias is None else cast_to(self.bias, self.computation_dtype, self.computation_device) |
| 71 | + return torch.nn.functional.linear(x, weight, bias) |
| 72 | + |
| 73 | + |
| 74 | +def enable_vram_management_recursively(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None, total_num_param=0): |
| 75 | + for name, module in model.named_children(): |
| 76 | + for source_module, target_module in module_map.items(): |
| 77 | + if isinstance(module, source_module): |
| 78 | + num_param = sum(p.numel() for p in module.parameters()) |
| 79 | + if max_num_param is not None and total_num_param + num_param > max_num_param: |
| 80 | + module_config_ = overflow_module_config |
| 81 | + else: |
| 82 | + module_config_ = module_config |
| 83 | + module_ = target_module(module, **module_config_) |
| 84 | + setattr(model, name, module_) |
| 85 | + total_num_param += num_param |
| 86 | + break |
| 87 | + else: |
| 88 | + total_num_param = enable_vram_management_recursively(module, module_map, module_config, max_num_param, overflow_module_config, total_num_param) |
| 89 | + return total_num_param |
| 90 | + |
| 91 | + |
| 92 | +def enable_vram_management(model: torch.nn.Module, module_map: dict, module_config: dict, max_num_param=None, overflow_module_config: dict = None): |
| 93 | + enable_vram_management_recursively(model, module_map, module_config, max_num_param, overflow_module_config, total_num_param=0) |
| 94 | + model.vram_management_enabled = True |
| 95 | + |
0 commit comments