@@ -29,12 +29,12 @@ Read the paper [here](https://arxiv.org/abs/1902.06714).
2929
3030| Layer type | Constructor name | Supported input layers | Rank of output array | Forward pass | Backward pass |
3131| ------------| ------------------| ------------------------| ----------------------| --------------| ---------------|
32- | Input | ` input ` | n/a | 1, 3 | n/a | n/a |
33- | Dense (fully-connected) | ` dense ` | ` input1d ` , ` flatten ` | 1 | ✅ | ✅ |
34- | Convolutional (2-d) | ` conv2d ` | ` input3d ` , ` conv2d ` , ` maxpool2d ` , ` reshape ` | 3 | ✅ | ✅(* ) |
35- | Max-pooling (2-d) | ` maxpool2d ` | ` input3d ` , ` conv2d ` , ` maxpool2d ` , ` reshape ` | 3 | ✅ | ✅ |
36- | Flatten | ` flatten ` | ` input3d ` , ` conv2d ` , ` maxpool2d ` , ` reshape ` | 1 | ✅ | ✅ |
37- | Reshape (1-d to 3-d) | ` reshape ` | ` input1d ` , ` dense ` , ` flatten ` | 3 | ✅ | ✅ |
32+ | Input | ` input ` | n/a | 1, 2, 3 | n/a | n/a |
33+ | Dense (fully-connected) | ` dense ` | ` input1d ` , ` flatten ` | 1 | ✅ | ✅ |
34+ | Convolutional (2-d) | ` conv2d ` | ` input3d ` , ` conv2d ` , ` maxpool2d ` , ` reshape ` | 3 | ✅ | ✅(* ) |
35+ | Max-pooling (2-d) | ` maxpool2d ` | ` input3d ` , ` conv2d ` , ` maxpool2d ` , ` reshape ` | 3 | ✅ | ✅ |
36+ | Flatten | ` flatten ` | ` input3d ` , ` conv2d ` , ` maxpool2d ` , ` reshape ` | 1 | ✅ | ✅ |
37+ | Reshape (1-d to 3-d) | ` reshape ` | ` input1d ` , ` dense ` , ` flatten ` | 3 | ✅ | ✅ |
3838
3939(* ) See Issue [ #145 ] ( https://github.com/modern-fortran/neural-fortran/issues/145 ) regarding non-converging CNN training on the MNIST dataset.
4040
0 commit comments