forked from sarafridov/plenoxels
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplenoxel_og_copy2.py
524 lines (441 loc) · 26.6 KB
/
plenoxel_og_copy2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
# THIS VERSION ALLOWS SPLITTING BUT NOT SPARCITY
# SO THERE IS A SINGLE DATA ARRAY NO INDEX
import jax
import jax.numpy as jnp
from jax import lax
# from jax.ops import index, index_update
from functools import partial
import numpy as np
import matplotlib.pyplot as plt
import os
import sh
from tqdm import tqdm
# Based on https://github.com/google-research/google-research/blob/d0a9b1dad5c760a9cfab2a7e5e487be00886803c/jaxnerf/nerf/model_utils.py#L166
def volumetric_rendering(rgb, sigma, z_vals, dirs, white_bkgd=False):
"""Volumetric Rendering Function.
Args:
rgb: jnp.ndarray(float32), color, [batch_size, num_samples, 3]
sigma: jnp.ndarray(float32), density, [batch_size, num_samples].
z_vals: jnp.ndarray(float32), [batch_size, num_samples].
dirs: jnp.ndarray(float32), [batch_size, 3].
white_bkgd: bool.
Returns:
comp_rgb: jnp.ndarray(float32), [batch_size, 3].
disp: jnp.ndarray(float32), [batch_size].
acc: jnp.ndarray(float32), [batch_size].
weights: jnp.ndarray(float32), [batch_size, num_samples]
"""
eps = 1e-10
dists = z_vals[Ellipsis, 1:] - z_vals[Ellipsis, :-1]
dists = dists * jnp.linalg.norm(dirs[Ellipsis, None, :], axis=-1) # Convert ray-relative distance to absolute distance (shouldn't matter if rays_d is normalized)
# Note that we're quietly turning sigma from [..., 0] to [...].
alpha = 1.0 - jnp.exp(-jax.nn.relu(sigma) * dists) # What fraction of light gets stuck in each voxel
# alpha = jax.nn.relu(sigma) * dists # The linear version of the problem TODO: try getting rid of the relu here and see what happens (since technically it's nonlinear)
# alpha = sigma * dists
# weights = alpha
accum_prod = jnp.concatenate([
jnp.ones_like(alpha[Ellipsis, :1], alpha.dtype),
jnp.cumprod(1.0 - alpha[Ellipsis, :-1] + eps, axis=-1)
],
axis=-1) # How much light is left as we enter each voxel
weights = alpha * accum_prod # The absolute amount of light that gets stuck in each voxel
comp_rgb = (weights[Ellipsis, None] * 1).sum(axis=-2) # Accumulated color over the samples, ignoring background
depth = (weights * z_vals[Ellipsis, :-1]).sum(axis=-1) # Weighted average of depths by contribution to final color
acc = weights.sum(axis=-1) # Total amount of light absorbed along the ray
# Equivalent to (but slightly more efficient and stable than):
# disp = 1 / max(eps, where(acc > eps, depth / acc, 0))
inv_eps = 1 / eps
disp = acc / depth
disp = jnp.where((disp > 0) & (disp < inv_eps) & (acc > eps), disp, 0) # disparity = inverse depth
if white_bkgd:
comp_rgb = comp_rgb + (1. - acc[Ellipsis, None]) # Including the white background in the final color
return comp_rgb, disp, acc, weights
# The volumetric rendering formula from Neural Volumes: https://arxiv.org/abs/1906.07751
def nv_rendering(rgb, sigma, z_vals, dirs, white_bkgd=False):
eps = 1e-10
dists = z_vals[Ellipsis, 1:] - z_vals[Ellipsis, :-1]
dists = dists * jnp.linalg.norm(dirs[Ellipsis, None, :], axis=-1) # Convert ray-relative distance to absolute distance (shouldn't matter if rays_d is normalized)
# Note that we're quietly turning sigma from [..., 0] to [...].
alpha = 1.0 - jnp.exp(-jax.nn.relu(sigma) * dists) # What fraction of light gets stuck in each voxel
tau = jnp.clip(jnp.cumsum(alpha, axis=-1), a_min=0, a_max=1)
weights = tau[Ellipsis, 1:] - tau[Ellipsis, :-1]
# jnp.concatenate(tau[Ellipsis, 1:], jnp.ones_like(tau[Ellipsis, :1])) # The absolute amount of light that gets stuck in each voxel
comp_rgb = (weights[Ellipsis, None] * jax.nn.sigmoid(rgb[:,:-1,:])).sum(axis=-2) # Accumulated color over the samples, ignoring background
depth = (weights * z_vals[Ellipsis, :-2]).sum(axis=-1) # Weighted average of depths by contribution to final color
acc = weights.sum(axis=-1) # Total amount of light absorbed along the ray
# Equivalent to (but slightly more efficient and stable than):
# disp = 1 / max(eps, where(acc > eps, depth / acc, 0))
inv_eps = 1 / eps
disp = acc / depth
disp = jnp.where((disp > 0) & (disp < inv_eps) & (acc > eps), disp, 0) # disparity = inverse depth
if white_bkgd:
comp_rgb = comp_rgb + (1. - acc[Ellipsis, None]) # Including the white background in the final color
return comp_rgb, disp, acc, weights
eps = 1e-5
# def near_zero(vector):
# return jnp.abs(vector) < eps
def safe_floor(vector):
return jnp.floor(vector + eps)
def safe_ceil(vector):
return jnp.ceil(vector - eps)
@partial(jax.jit, static_argnums=(2,3,4,5,8))
def intersection_distances(inputs, data_dict, resolution, radius, jitter, uniform, key, sh_dim, interpolation, matrix, powers):
start, stop, offset, interval = inputs["start"], inputs["stop"], inputs["offset"], inputs["interval"]
if uniform == 0:
# For a single ray, compute all the possible voxel intersections up to the upper bound number, starting when the ray hits the cube
upper_bound = int(1 + resolution) # per dimension upper bound on the number of voxel intersections
intersections0 = jnp.linspace(start=start[0] + offset[0], stop=start[0] + offset[0] + interval[0] * upper_bound, num=upper_bound, endpoint=False)
intersections1 = jnp.linspace(start=start[1] + offset[1], stop=start[1] + offset[1] + interval[1] * upper_bound, num=upper_bound, endpoint=False)
intersections2 = jnp.linspace(start=start[2] + offset[2], stop=start[2] + offset[2] + interval[2] * upper_bound, num=upper_bound, endpoint=False)
intersections = jnp.concatenate([intersections0, intersections1, intersections2], axis=None)
intersections = jnp.sort(intersections) # TODO: replace this with just a merge of the three intersection arrays
else:
voxel_len = radius * 2.0 / resolution
realstart = jnp.min(start)
count = int(resolution*3 / uniform)
intersections = jnp.linspace(start=realstart + uniform*voxel_len, stop=realstart + uniform*voxel_len*(count+1), num=count, endpoint=False)
intersections = jnp.where(intersections <= stop, intersections, stop)
# Get the values at these intersection points
ray_o, ray_d = inputs["ray_o"], inputs["ray_d"]
voxel_sh, voxel_sigma, intersections = values_oneray(intersections, data_dict, ray_o, ray_d, resolution, key, sh_dim, radius, jitter, 1e-5, interpolation, matrix, powers)
return voxel_sh, voxel_sigma, intersections
get_intersections_partial = jax.vmap(fun=intersection_distances, in_axes=({"start": 0, "stop": 0, "offset": 0, "interval": 0, "ray_o": 0, "ray_d": 0}, None, None, None, None, None, 0, None, None, None, None), out_axes=0)
get_intersections = jax.vmap(fun=get_intersections_partial, in_axes=({"start": 1, "stop": 1, "offset": 1, "interval": 1, "ray_o": 1, "ray_d": 1}, None, None, None, None, None, 1, None, None, None, None), out_axes=1)
@partial(jax.jit, static_argnums=(3,4))
def voxel_ids_oneray(intersections, ray_o, ray_d, voxel_len, resolution, eps=1e-5):
# For a single ray, compute the ids of all the voxels it passes through
# Compute the midpoint of the ray segment inside each voxel
midpoints = (intersections[Ellipsis, 1:] + intersections[Ellipsis, :-1]) / 2.0
midpoints = ray_o[jnp.newaxis, :] + midpoints[:, jnp.newaxis] * ray_d[jnp.newaxis, :]
ids = jnp.array(jnp.floor(midpoints / voxel_len + eps) + resolution / 2, dtype=int)
return ids
voxel_ids_partial = jax.jit(jax.vmap(fun=voxel_ids_oneray, in_axes=(0, 0, 0, None, None), out_axes=0))
voxel_ids = jax.jit(jax.vmap(fun=voxel_ids_partial, in_axes=(1, 1, 1, None, None), out_axes=1))
def scalarize(i, j, k, resolution):
return i*resolution*resolution + j*resolution + k
def vectorize(index, resolution):
i = index // (resolution**2)
j = (index - i*resolution*resolution) // resolution
k = index - i*resolution*resolution - j*resolution
return jnp.array([i, j, k])
# Remove voxels that are empty, where empty is determined by weight (contribution to training pixels) or sigma (opacity)
def prune_grid(grid, method, threshold, train_c2w, H, W, focal, batch_size, resolution, key, radius, harmonic_degree, jitter, uniform, interpolation):
# method can be 'weight' or 'sigma'
# sigma: prune by opacity
# weight: prune by contribution to the training rays
indices, data = grid
if method == 'sigma':
keep_idx = jnp.argwhere(data[-1] >= threshold) # [N_keep, 1]
elif method == 'weight':
print(f'rendering all the training views to accumulate weight')
max_contribution = np.zeros((resolution, resolution, resolution))
for c2w in tqdm(train_c2w):
rays_o, rays_d = get_rays(H, W, focal, c2w)
rays_o = np.reshape(rays_o, [-1,3])
rays_d = np.reshape(rays_d, [-1,3])
for i in range(int(np.ceil(H*W/batch_size))):
start = i*batch_size
stop = min(H*W, (i+1)*batch_size)
if jitter > 0:
_, _, _, weightsi, voxel_idsi = jax.lax.stop_gradient(render_rays(grid, (rays_o[start:stop], rays_d[start:stop]), resolution, key[start:stop], radius, harmonic_degree, jitter, uniform, interpolation))
else:
_, _, _, weightsi, voxel_idsi = jax.lax.stop_gradient(render_rays(grid, (rays_o[start:stop], rays_d[start:stop]), resolution, key, radius, harmonic_degree, jitter, uniform, interpolation))
weightsi = np.asarray(weightsi)
voxel_idsi = np.asarray(voxel_idsi[:,:-1,:])
max_contribution[voxel_idsi[...,0], voxel_idsi[...,1], voxel_idsi[...,2]] = np.maximum(max_contribution[voxel_idsi[...,0], voxel_idsi[...,1], voxel_idsi[...,2]], weightsi)
keep_idx = jnp.argwhere(max_contribution >= threshold) # [N_keep, 3]
keep_idx = indices[keep_idx[:,0], keep_idx[:,1], keep_idx[:,2]] # [N_keep, 1]
del max_contribution, weightsi, voxel_idsi
keep_idx = jnp.squeeze(keep_idx) # Indexes into the data
# Also keep any neighbors of any voxels that are kept
keep_idx = jax.vmap(lambda idx: data_index_to_scalar(idx, grid))(keep_idx) # Map index into data to scalar spatial index
keep_idx = jax.vmap(lambda idx: get_neighbors(idx, resolution))(keep_idx).flatten() # Get neighbors of these spatial indices
jnpindices = jnp.array(indices)
keep_idx = jax.vmap(lambda idx: scalar_to_data_index(idx, jnpindices))(keep_idx) # Map scalar spatial index to index into data
# Filter the data
keep_idx = jnp.unique(keep_idx) # dedup and sort
data = [d[keep_idx] for d in data]
sort_idx = jnp.argsort(indices[indices>=0])
idx = jnp.argwhere(indices>=0)[sort_idx][keep_idx] # [N_keep, 3]
indices = jnp.ones((resolution, resolution, resolution), dtype=int) * -1
indices = indices.at[idx[:,0], idx[:,1], idx[:,2]].set(jnp.arange(len(keep_idx), dtype=int))
print(f'after pruning, the number of nonempty indices is {len(jnp.argwhere(indices >= 0))}')
del idx, keep_idx, jnpindices
return (indices, data)
# Map a position in the data array to the corresponding scalar spatial index
def data_index_to_scalar(idx, grid):
indices, data = grid
active_voxels = jnp.argwhere(indices>=0) # [N_active_voxels, 3]
assert len(data[-1]) == len(active_voxels)
resolution = len(indices)
return scalarize(active_voxels[idx,0], active_voxels[idx,1], active_voxels[idx,2], resolution)
# Map a scalar index idx to the corresponding position in the data array, or -1 if pruned
def scalar_to_data_index(idx, indices):
resolution = len(indices)
vector_idx = vectorize(idx, resolution)
print(f'indices has type {type(indices)} and idx has type {type(idx)}')
return indices[vector_idx[0], vector_idx[1], vector_idx[2]]
# Map an index in a grid to a set of 8 child indices in the split grid
def expand_index(idx, new_resolution):
i000 = scalarize(idx[0]*2, idx[1]*2, idx[2]*2, new_resolution)
i001 = scalarize(idx[0]*2, idx[1]*2, idx[2]*2 + 1, new_resolution)
i010 = scalarize(idx[0]*2, idx[1]*2 + 1, idx[2]*2, new_resolution)
i011 = scalarize(idx[0]*2, idx[1]*2 + 1, idx[2]*2 + 1, new_resolution)
i100 = scalarize(idx[0]*2 + 1, idx[1]*2, idx[2]*2, new_resolution)
i101 = scalarize(idx[0]*2 + 1, idx[1]*2, idx[2]*2 + 1, new_resolution)
i110 = scalarize(idx[0]*2 + 1, idx[1]*2 + 1, idx[2]*2, new_resolution)
i111 = scalarize(idx[0]*2 + 1, idx[1]*2 + 1, idx[2]*2 + 1, new_resolution)
return jnp.array([i000, i001, i010, i011, i100, i101, i110, i111])
def map_neighbors(offset):
# offset is a ternary 3-vector; return its index into the offsets array (of length 27, in expand_data)
return (offset[0] + 1)*9 + (offset[1] + 1)*3 + offset[2] + 1
# Split each nonempty voxel in each dimension, using trilinear interpolation to initialize child voxels
def split_weights(childx, childy, childz):
# childx, childy, childz are each -1 or 1 denoting the position of the child voxel within the parent (-1 instead of 0 for convenience)
# all 27 neighbors of the parent are considered in the weights, but only 8 of the weights are nonzero for each child
weights = jnp.zeros(27)
# center of parent voxel is distance 1/4 from center of each child (nearest neighbor in all dimensions).
weights = weights.at[13].set(0.75 * 0.75 * 0.75)
# neighbors that are one away have 2 zeros and one nonzero. There should be 3 of these.
weights = weights.at[map_neighbors([childx, 0, 0])].set(0.75 * 0.75 * 0.25)
weights = weights.at[map_neighbors([0, childy, 0])].set(0.75 * 0.75 * 0.25)
weights = weights.at[map_neighbors([0, 0, childz])].set(0.75 * 0.75 * 0.25)
# neighbors that are 2 away have 1 zero and two nonzeros. There should be 3 of these.
weights = weights.at[map_neighbors([childx, childy, 0])].set(0.75 * 0.25 * 0.25)
weights = weights.at[map_neighbors([childx, 0, childz])].set(0.75 * 0.25 * 0.25)
weights = weights.at[map_neighbors([0, childy, childz])].set(0.75 * 0.25 * 0.25)
# one neighbor is 3 away and has all 3 nonzeros.
weights = weights.at[map_neighbors([childx, childy, childz])].set(0.25 * 0.25 * 0.25)
return weights
def expand_data(idx, grid):
# idx is a vector index of the voxel to be split
offsets = jnp.array([[-1,-1,-1], [-1,-1,0], [-1,-1,1], [-1,0,-1], [-1,0,0], [-1,0,1], [-1,1,-1], [-1,1,0], [-1,1,1],
[0,-1,-1], [0,-1,0], [0,-1,1], [0,0,-1], [0,0,0], [0,0,1], [0,1,-1], [0,1,0], [0,1,1],
[1,-1,-1], [1,-1,0], [1,-1,1], [1,0,-1], [1,0,0], [1,0,1], [1,1,-1], [1,1,0], [1,1,1]]) # [27, 3]
neighbor_idx = idx[jnp.newaxis,:] + offsets # [27, 3]
neighbor_data = grid_lookup(neighbor_idx[:,0], neighbor_idx[:,1], neighbor_idx[:,2], grid)
child_idx = jnp.array([[-1,-1,-1], [-1,-1,1], [-1,1,-1], [-1,1,1], [1,-1,-1], [1,-1,1], [1,1,-1], [1,1,1]]) # [8, 3]
weights = jax.vmap(split_weights)(child_idx[:,0], child_idx[:,1], child_idx[:,2]) # [8, 27] first index is over the 8 child voxels, second index is over the neighbors for the parent, only 8 of which are relevant to each child
expanded_data = [jnp.sum(weights[..., jnp.newaxis] * d, axis=1) for d in neighbor_data[:-1]]
expanded_data.append(jnp.sum(weights * neighbor_data[-1], axis=1))
del weights, offsets, neighbor_idx, neighbor_data, child_idx
return expanded_data
# Map an index (scalarized) to itself and its 6 neighbors
def get_neighbors(idx, resolution):
volid = vectorize(idx, resolution)
front = scalarize(jnp.minimum(resolution-1, volid[0] + 1), volid[1], volid[2], resolution)
back = scalarize(jnp.maximum(0, volid[0] - 1), volid[1], volid[2], resolution)
top = scalarize(volid[0], jnp.minimum(resolution-1, volid[1] + 1), volid[2], resolution)
bottom = scalarize(volid[0], jnp.maximum(0, volid[1] - 1), volid[2], resolution)
right = scalarize(volid[0], volid[1], jnp.minimum(resolution-1, volid[2] + 1), resolution)
left = scalarize(volid[0], volid[1], jnp.maximum(0, volid[2] - 1), resolution)
return jnp.array([idx, front, back, top, bottom, right, left])
# Subdivide each voxel into 8 voxels, using trilinear interpolation and respecting sparsity
def split_grid(grid):
# indices, data = grid
# # Expand the indices, respecting sparsity
# new_resolution = len(indices) * 2
# big_indices = jnp.ones((new_resolution, new_resolution, new_resolution), dtype=int) * -1
# keep_idx = jnp.argwhere(indices >= 0) # [N_keep, 3]
# # Expand the data, with trilinear interpolation
# big_data_partial = jax.vmap(expand_data, in_axes=(0, None))(keep_idx, grid)
# big_data = [d.reshape(len(data[-1])*8, 3) for d in big_data_partial[:-1]]
# big_data.append(big_data_partial[-1].reshape(len(data[-1])*8))
# del data
# big_keep_idx = jnp.ravel(jax.vmap(lambda index: expand_index(index, new_resolution), in_axes=0)(keep_idx))
# idx = vectorize(big_keep_idx, new_resolution) # [3, N_keep*8]
# big_indices = big_indices.at[idx[0,:], idx[1,:], idx[2,:]].set(jnp.arange(len(big_keep_idx), dtype=int))
# del idx, big_keep_idx, keep_idx, indices
# print(f'after splitting, the number of nonempty indices is {len(jnp.argwhere(big_indices >= 0))}')
# return (big_indices, big_data)
resolution = grid[-1].shape[0]
print(f'split grid res is {resolution}')
pts = jnp.indices(dimensions=(resolution*2, resolution*2, resolution*2))/2.0
return [jax.scipy.ndimage.map_coordinates(grid[-1], pts, order= 1)]
def crop_inner_cube(grid):
# resolution = grid[-1].shape[0]
# pts = jnp.indices(dimensions=(resolution/2, resolution/2, resolution/2))/2.0
# return [jax.scipy.ndimage.map_coordinates(grid[-1], pts, order= 1)], True
bttm = grid[-1].shape[0]//4
top = int(grid[-1].shape[0] * .75)
temp = grid[0]
# print(temp[bttm:top, bttm:top, bttm:top].shape)
# grid[0] = temp[bttm-5:top-5, bttm+5:top+5, bttm:top]
grid[0] = temp[106:406, 106:406, 106:406]
return grid
def crop_inner_cube2(grid):
# resolution = grid[-1].shape[0]
# pts = jnp.indices(dimensions=(resolution/2, resolution/2, resolution/2))/2.0
# return [jax.scipy.ndimage.map_coordinates(grid[-1], pts, order= 1)], True
bttm = grid[-1].shape[0]//4
top = int(grid[-1].shape[0] * .75)
temp = grid[0]
# print(temp[bttm:top, bttm:top, bttm:top].shape)
# grid[0] = temp[bttm-5:top-5, bttm+5:top+5, bttm:top]
grid[0] = temp[50:650, 50:650, 50:650]
return grid
def initialize_grid(resolution, ini_rgb=0.0, ini_sigma=0.1, harmonic_degree=0):
sh_dim = (harmonic_degree + 1)**2
data = [] # data is a list of length sh_dim + 1
for _ in range(sh_dim):
data.append(jnp.ones((resolution**3, 3), dtype=np.float32) * ini_rgb)
data.append(jnp.ones((resolution, resolution, resolution), dtype=np.float32) * ini_sigma)
# indices = jnp.arange(resolution**3, dtype=int).reshape((resolution, resolution, resolution))
return data
def save_grid(grid, dirname):
# indices, data = grid
if not os.path.exists(dirname):
os.makedirs(dirname)
np.save(os.path.join(dirname, f'sigma_grid.npy'), grid[-1])
for i in range(len(grid)-1):
np.save(os.path.join(dirname, f'sh_grid{i}.npy'), grid[i])
# np.save(os.path.join(dirname, f'indices.npy'), indices)
def load_grid(dirname, sh_dim):
data = []
for i in range(sh_dim):
data.append(np.load(os.path.join(dirname, f'sh_grid{i}.npy')))
data.append(np.load(os.path.join(dirname, f'sigma_grid.npy')))
# indices = np.load(os.path.join(dirname, f'indices.npy'))
return data
@jax.jit
def trilinear_interpolation_weight(xyzs):
# xyzs should have shape [n_pts, 3] and denote the offset (as a fraction of voxel_len) from the 000 interpolation point
xs = xyzs[:,0]
ys = xyzs[:,1]
zs = xyzs[:,2]
weight000 = (1-xs) * (1-ys) * (1-zs) # [n_pts]
weight001 = (1-xs) * (1-ys) * zs # [n_pts]
weight010 = (1-xs) * ys * (1-zs) # [n_pts]
weight011 = (1-xs) * ys * zs # [n_pts]
weight100 = xs * (1-ys) * (1-zs) # [n_pts]
weight101 = xs * (1-ys) * zs # [n_pts]
weight110 = xs * ys * (1-zs) # [n_pts]
weight111 = xs * ys * zs # [n_pts]
weights = jnp.stack([weight000, weight001, weight010, weight011, weight100, weight101, weight110, weight111], axis=-1) # [n_pts, 8]
return weights
def apply_power(power, xyzs):
return xyzs[:,0]**power[0] * xyzs[:,1]**power[1] * xyzs[:,2]**power[2]
@jax.jit
def tricubic_interpolation(xyzs, corner_pts, grid, matrix, powers):
# xyzs should have shape [n_pts, 3] and denote the offset (as a fraction of voxel_len) from the 000 interpolation point
# corner_pts should have shape [n_pts, 3] and denote the grid coordinates of the 000 interpolation point
# matrix should be [64, 64] output of tricubic_interpolation_matrix
# powers should be [64, 3] and contain all combinations of the powers 0 through 3 in three dimensions
neighbor_data = jax.vmap(lambda pts: tricubic_neighbors(pts, grid))(corner_pts) # list where each entry has shape [n_pts, 64, ...]
coeffs = [jnp.clip(jax.vmap(lambda d: jnp.matmul(matrix, d))(d), a_min=-1e7, a_max=1e7) for d in neighbor_data] # list where each entry has shape [n_pts, 64, ...]
things_to_multiply_by_coeffs = jnp.clip(jax.vmap(lambda power: apply_power(power, xyzs), out_axes=-1)(powers), a_min=-1e7, a_max=1e7) # [n_pts, 64]
result = [jnp.sum(coeff * things_to_multiply_by_coeffs[..., jnp.newaxis], axis=1) for coeff in coeffs[:-1]] # list where each entry has shape [n_pts, ...]
result.append(jnp.sum(coeffs[-1] * things_to_multiply_by_coeffs, axis=1))
return result
@jax.jit
# Get the data at the 64 neighboring voxels needed for tricubic interpolation
def tricubic_neighbors(idx, grid):
# idx is a vector index of the voxel to be interpolated
offsets = []
for i in range(4):
for j in range(4):
for k in range(4):
offsets.append([i-1,j-1,k-1])
offsets = jnp.array(offsets) # [64, 3]
neighbor_idx = idx[jnp.newaxis, :] + offsets # [64, 3]
resolution = len(grid[0])
neighbor_idx = jnp.clip(neighbor_idx, a_min=0, a_max=resolution-1)
neighbor_data = jax.vmap(lambda neighbor: grid_lookup(neighbor[0], neighbor[1], neighbor[2], grid))(neighbor_idx)
return neighbor_data
# Generate the 64 by 64 weight matrix that maps grid values to polynomial coefficients
@jax.jit
def tricubic_interpolation_matrix():
# Set up the indices
powers = []
for i in range(4):
for j in range(4):
for k in range(4):
powers.append([i,j,k])
powers = np.asarray(powers) # [64, 3] all combinations of the powers 0 through 3 in three dimensions
coords = powers - 1 # [64, 3] relative coordinates of neighboring voxels
# Set up the weight matrix
matrix = np.zeros((64,64))
for i in range(64):
for j in range(64):
x = coords[i, 0]
y = coords[i, 1]
z = coords[i, 2]
matrix[i,j] = x**powers[j, 0] * y**powers[j, 1] * z**powers[j, 2]
# Invert the weight matrix
inverted_matrix = np.linalg.inv(matrix)
return jnp.array(inverted_matrix), powers
@jax.jit
def grid_lookup(x, y, z, grid):
# indices, data = grid
# # ret = [jnp.where(indices[x,y,z,jnp.newaxis]>=0, d[indices[x,y,z]], jnp.zeros(3)) for d in data[:-1]]
# ret = []
# # ret = [jnp.zeros(3) for i in range(len(data[:-1]))] # Skip expensive lookups during alpha-only optimization
# ret.append(jnp.where(indices[x,y,z]>=0, data[-1][indices[x,y,z]], 0))
# return ret
return grid[x, y, z]
@partial(jax.jit, static_argnums=(4,7,8,10))
def values_oneray(intersections, grid, ray_o, ray_d, resolution, key, sh_dim, radius, jitter, eps, interpolation, matrix, powers):
voxel_len = radius * 2.0 / resolution
if not jitter:
pts = ray_o[jnp.newaxis, :] + intersections[:, jnp.newaxis] * ray_d[jnp.newaxis, :] # [n_intersections, 3]
grid = grid[-1]
pts = (pts + radius) * resolution / (2*radius)
pts = jnp.transpose(pts)
pt = jax.scipy.ndimage.map_coordinates(grid, pts, order= 1)
if interpolation == 'trilinear':
pt_sh = []
pt_sigma = pt[:-1]
else:
print(f'Unrecognized interpolation method {interpolation}.')
assert False
return pt_sh, pt_sigma, intersections
@partial(jax.jit, static_argnums=(2,4,5,6,7,8,9))
def render_rays(grid, rays, resolution, keys, radius=1.3, harmonic_degree=0, jitter=0, uniform=0, interpolation='trilinear', nv=False):
sh_dim = (harmonic_degree + 1)**2
voxel_len = radius * 2.0 / resolution
assert (resolution // 2) * 2 == resolution # Renderer assumes resolution is a multiple of 2
rays_o, rays_d = rays
# Compute when the rays enter and leave the grid
offsets_pos = jax.lax.stop_gradient((radius - rays_o) / rays_d)
offsets_neg = jax.lax.stop_gradient((-radius - rays_o) / rays_d)
offsets_in = jax.lax.stop_gradient(jnp.minimum(offsets_pos, offsets_neg))
offsets_out = jax.lax.stop_gradient(jnp.maximum(offsets_pos, offsets_neg))
start = jax.lax.stop_gradient(jnp.max(offsets_in, axis=-1, keepdims=True))
stop = jax.lax.stop_gradient(jnp.min(offsets_out, axis=-1, keepdims=True))
first_intersection = jax.lax.stop_gradient(rays_o + start * rays_d)
# Compute locations of ray-voxel intersections along each dimension
interval = jax.lax.stop_gradient(voxel_len / jnp.abs(rays_d))
offset_bigger = jax.lax.stop_gradient((safe_ceil(first_intersection / voxel_len) * voxel_len - first_intersection) / rays_d)
offset_smaller = jax.lax.stop_gradient((safe_floor(first_intersection / voxel_len) * voxel_len - first_intersection) / rays_d)
offset = jax.lax.stop_gradient(jnp.maximum(offset_bigger, offset_smaller))
# Compute the samples along each ray
matrix = None
powers = None
if interpolation == 'tricubic':
matrix, powers = tricubic_interpolation_matrix()
if len(rays_o.shape) > 2:
voxel_sh, voxel_sigma, intersections = get_intersections({"start": start, "stop": stop, "offset": offset, "interval": interval, "ray_o": rays_o, "ray_d": rays_d}, grid, resolution, radius, jitter, uniform, keys, sh_dim, interpolation, matrix, powers)
else:
voxel_sh, voxel_sigma, intersections = get_intersections_partial({"start": start, "stop": stop, "offset": offset, "interval": interval, "ray_o": rays_o, "ray_d": rays_d}, grid, resolution, radius, jitter, uniform, keys, sh_dim, interpolation, matrix, powers)
# Apply spherical harmonics
# voxel_rgb = sh.eval_sh(harmonic_degree, voxel_sh, rays_d)
# Call volumetric_rendering
if harmonic_degree >= 0:
voxel_rgb = sh.eval_sh(harmonic_degree, voxel_sh, rays_d)
else:
voxel_rgb = []
if nv:
rgb, disp, acc, weights = nv_rendering(voxel_rgb, voxel_sigma, intersections, rays_d)
else:
rgb, disp, acc, weights = volumetric_rendering(voxel_rgb, voxel_sigma, intersections, rays_d)
pts = rays_o[:, jnp.newaxis, :] + intersections[:, :, jnp.newaxis] * rays_d[:, jnp.newaxis, :] # [n_rays, n_intersections, 3]
ids = jnp.clip(jnp.array(jnp.floor(pts / voxel_len + eps) + resolution / 2, dtype=int), a_min=0, a_max=resolution-1)
return rgb, disp, acc, weights, ids
def get_rays(H, W, focal, c2w):
i, j = jnp.meshgrid(jnp.linspace(0, W-1, W) + 0.5, jnp.linspace(0, H-1, H) + 0.5)
dirs = jnp.stack([(i-W*.5)/focal, -(j-H*.5)/focal, -jnp.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = jnp.sum(dirs[..., jnp.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = jnp.broadcast_to(c2w[:3,-1], rays_d.shape)
return rays_o, rays_d