-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpositive_divergent.py
90 lines (80 loc) · 3.41 KB
/
positive_divergent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from ast import keyword
from distutils.command.build_scripts import first_line_re
from operator import truediv
from warnings import catch_warnings
from analyzers import dtoscillator
from numpy import column_stack
from test import get_data
import numpy as np
from scipy.signal import argrelextrema
import pandas as pd
import matplotlib.pyplot as plt
from analyzers import rsi
import time
from forex_getdata import get_data
def find_pos_rsi_div(pair,timeframe,ohlc):
rsis = rsi.RSI()
rsi_values = rsis.analyze(ohlc, 14)
num = pd.DataFrame()
minima = pd.DataFrame()
rsiss = pd.DataFrame()
num['num'] = pd.DataFrame(argrelextrema(ohlc.Low.values, np.less_equal,order=1)[0])
minima['min'] = pd.DataFrame(ohlc.iloc[argrelextrema(ohlc.Low.values, np.less_equal,order=1)[0]].Low)
rsiss['rsi'] = pd.DataFrame(rsi_values.iloc[argrelextrema(ohlc.Low.values, np.less_equal,order=1)[0]].rsi)
minima = minima.reset_index()
rsiss = rsiss.reset_index()
# print(num)
# print(minima)
# print(rsiss)
# plt.scatter(minima.index,minima,c='r')
# plt.plot(ohlc.index,ohlc.Low)
# plt.show()
def linear_formula(x, y1, y2, x2):
m = (y2 - y1) / x2
y = m * x + y1
return y
positive_dive = pd.DataFrame()
for n1 in range(0, minima.shape[0] - 1):
for n2 in range(n1 + 1, minima.shape[0]):
if minima['min'][n1] > minima['min'][n2] and rsiss['rsi'][n1] < rsiss['rsi'][n2]:
low1 = minima['min'][n1]
low2 = minima['min'][n2]
rsi1 = rsiss['rsi'][n1]
rsi2 = rsiss['rsi'][n2]
num1 = num['num'][n1]
num2 = num['num'][n2]
date1 = minima['Date'][n1]
date2 = minima['Date'][n2]
count = abs(num2 - num1)
# print(num1)
# print(num2)
# print(count)
# print(f"date1 {date1}")
# print(f"date2 {date2}")
# print(f"low1 {low1}")
# print(f"low2 {low2}")
# print(f"rsi1 {rsi1}")
# print(f"rsi2 {rsi2}")
is_div_low = True
is_div_rsi = True
for i in range(0, count + 1):
value_low = linear_formula(i, y1=low1, y2=low2, x2=count)
value_rsi = linear_formula(i, y1=rsi1, y2=rsi2, x2=count)
position = num1 + i
# print(f'pisition {position} and ohlc {ohlc.Low[position]}')
# print(f"low value {value_low}")
# print(f"rsi value {value_rsi}")
if ohlc.Low[position] < value_low:
is_div_low = False
break
if rsi_values.rsi[position] < value_rsi:
is_div_rsi = False
break
if (is_div_low == True and is_div_rsi == True):
# print(f"low1 value {low1} and low2 {low2}")
# print(f"rsi1 value {rsi1} and rsi2 value {rsi2}")
div1 = low1
div2 = low2
temp = pd.DataFrame([[date1, div1, date2, div2]],columns=['date1', 'div1', 'date2', 'div2'])
positive_dive = pd.concat([positive_dive, temp])
return positive_dive