-
Notifications
You must be signed in to change notification settings - Fork 2
/
trendln.py
832 lines (818 loc) · 59.9 KB
/
trendln.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
import numpy as np
#exec(open(r'D:\OneDrive\documents\Projects\trader\trendln\trendln\__init__.py').read())
def datefmt(xdate, cal=None):
from pandas.tseries.holiday import AbstractHolidayCalendar, Holiday, nearest_workday, \
USMartinLutherKingJr, USPresidentsDay, GoodFriday, USMemorialDay, \
USLaborDay, USThanksgivingDay
from pandas.tseries.offsets import CustomBusinessDay
class USTradingCalendar(AbstractHolidayCalendar):
rules = [
Holiday('NewYearsDay', month=1, day=1, observance=nearest_workday),
USMartinLutherKingJr,
USPresidentsDay,
GoodFriday,
USMemorialDay,
Holiday('USIndependenceDay', month=7, day=4, observance=nearest_workday),
USLaborDay,
USThanksgivingDay,
Holiday('Christmas', month=12, day=25, observance=nearest_workday)
]
if cal == None: cal = USTradingCalendar()
def mydate(x,pos):
#print((x,pos))
val = int(x + 0.5)
if val < 0: return (xdate[0].to_pydatetime() - CustomBusinessDay(-val, calendar=cal)).strftime('%Y-%m-%d')
elif val >= len(xdate): return (xdate[-1].to_pydatetime() + CustomBusinessDay(val - len(xdate) + 1, calendar=cal)).strftime('%Y-%m-%d')
else: return xdate[val].strftime('%Y-%m-%d')
return mydate
def plot_sup_res_learn(curdir, hist):
import os
if not os.path.isdir(os.path.join(curdir, 'data')): os.mkdir(os.path.join(curdir, 'data')) #image folder
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
#for x in plt.get_fignums(): plt.close(plt.figure(x)) #clean up when crashes occur and figures left open
#plt.get_backend(): 'TkAgg' is default
hist = hist[:'2019-10-07']
def fig_slopeint():
plt.clf()
plt.rcParams.update({'font.size': 14})
plt.gcf().set_size_inches(1000/plt.gcf().dpi, 1000/plt.gcf().dpi) #plt.gcf().dpi=100
spec = gridspec.GridSpec(ncols=1, nrows=2, figure=plt.gcf(), height_ratios=[3, 1])
plt.subplot(spec[1, 0])
plt.axis('off')
plt.gca().get_xaxis().set_visible(False)
plt.gca().get_yaxis().set_visible(False)
plt.annotate(r'Standard slope-intercept line equation: $f(x)=y=mx+b$' + '\n'
r'For 2 points $(x_0, y_0), (x_1, y_1)$:' + '\n' +
r'Slope derived from two points: $m=\frac{\Delta y}{\Delta x}=\frac{y_0-y_1}{x_0-x_1}$' + '\n' +
r'Intercept derived from slope and point: $b=y_0-mx_0=y_1-mx_1$' + '\n' +
r'Y-axis Distance to point from line: $d=\left|mx_2+b-y_2\right|$' + '\n' +
r'''Pythagorean's Theorem for Right Triangles: $c^2=a^2+b^2\equiv$ $d^2=\Delta x^2+\Delta y^2$''' + '\n' +
r'Distance between Points: d=$\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}$', (0, 0))
plt.subplot(spec[0, 0])
m = (hist.Close.iloc[-3] - hist.Close.iloc[-1]) / -2
b1, b2 = hist.Close.iloc[-1] - m * 2, hist.Close.iloc[-3] - m * 0
d = abs(m * 1 + b1 - hist.Close.iloc[-2])
dist = np.sqrt(np.square(hist.Close.iloc[-3] - hist.Close.iloc[-1]) + np.square(-2))
height = hist.Close.iloc[-3:].max() - hist.Close.iloc[-3:].min()
plt.plot(range(len(hist.Close)-3, len(hist.Close)), hist.Close.iloc[-3:])
plt.yticks(hist.Close.iloc[-3:])
plt.plot([len(hist.Close)-3, len(hist.Close)-1], [hist.Close.iloc[-3], hist.Close.iloc[-1]], 'g--')
#perpendicular slope: 1/-m, intercept to midpoint b=y-mx:
#intcpt = (hist.Close.iloc[-3] + hist.Close.iloc[-1]) / 2 - (-1/m)
ax = plt.gca()
plt.ylim(ax.get_ylim()[0] - height * 0.1, ax.get_ylim()[1])
#drawdim = plt.gcf().get_size_inches()*plt.gcf().dpi
bbox = ax.get_window_extent()#.transformed(plt.gcf().dpi_scale_trans.inverted()) #convert pixels to points
drawdim = [bbox.width, bbox.height]
xaxwdt, yaxhgt = ax.get_xlim()[1] - ax.get_xlim()[0], ax.get_ylim()[1] - ax.get_ylim()[0]
mvisual = (hist.Close.iloc[-3] - hist.Close.iloc[-1]) * drawdim[1] / yaxhgt / (-2 * drawdim[0] / xaxwdt) #scale is 2:yaxhgt, could use this in computations, but must do dynamically with event handler since draw scale changes
#intcpt = (hist.Close.iloc[-3] - ax.get_ylim()[0]) * drawdim[1] / yaxhgt - mvisual * (0.1 * drawdim[0] / xaxwdt)
#print((mvisual, intcpt, xaxwdt, yaxhgt, drawdim, ax.get_ylim()))
#(len(hist.Close)-3, hist.Close.iloc[-3])
#a = plt.annotate('', (0.1 * drawdim[0] / xaxwdt, mvisual * (0.1 * drawdim[0] / xaxwdt) + intcpt), (2.1 * drawdim[0] / xaxwdt, mvisual * (2.1 * drawdim[0] / xaxwdt) + intcpt), xycoords='axes pixels', textcoords='axes pixels', arrowprops={'arrowstyle':'-['})
intcpt = ((hist.Close.iloc[-3] + hist.Close.iloc[-1]) / 2 - ax.get_ylim()[0]) * drawdim[1] / yaxhgt - (-(drawdim[0] / 2) / mvisual)
ann = plt.annotate(r'$d=\sqrt{{({}-{})^2+({}-{})^2}}={}$'.format(hist.Close.iloc[-3], hist.Close.iloc[-1], 0, 2, round(dist, 2)), (len(hist.Close)-2, (hist.Close.iloc[-3] + hist.Close.iloc[-1]) / 2), ax.transData.inverted().transform(((drawdim[0] * 0.54)+bbox.x0, (-(drawdim[0] * 0.54)/mvisual + intcpt)+bbox.y0)), textcoords='data', color='green', ha='center', va='center', arrowprops={'arrowstyle':'-[', 'color':'green'})
#print(drawdim, ann.xyann, mvisual, intcpt, ax.get_xlim())
plt.annotate(r'$b={}-{}*{}={}-{}*{}={}$'.format(hist.Close.iloc[-1], round(m, 2), 2, hist.Close.iloc[-3], round(m, 2), 0, b1), (len(hist.Close)-3, hist.Close.iloc[-3]), (len(hist.Close)-3, hist.Close.iloc[-3] - height*0.1), arrowprops={'arrowstyle':'->'})
plt.plot([len(hist.Close)-2, len(hist.Close)-2], [m * 1 + b1, hist.Close.iloc[-2]], 'r--')
plt.annotate((r'$d=$' + '\n' + r'$\left|{}*{}+{}-{}\right|$' + '\n' + r'$={}$').format(round(m, 2), 1, b1, hist.Close.iloc[-2], round(d, 2)), (len(hist.Close)-2, (m * 1 + b1 + hist.Close.iloc[-2]) / 2), (len(hist.Close)-2+0.1, (m * 1 + b1 + hist.Close.iloc[-2]) / 2), va='center', color='red', arrowprops={'arrowstyle':'-[', 'color':'red'})
plt.annotate(r'$m=\frac{{{}}}{{{}}}={}$'.format(round(hist.Close.iloc[-3] - hist.Close.iloc[-1], 2), 0 - 2, round(m, 2)), (len(hist.Close)-2, (hist.Close.iloc[-3] + hist.Close.iloc[-1]) / 2), (len(hist.Close)-2+0.2, (hist.Close.iloc[-3] + hist.Close.iloc[-1]) / 2 - height * 0.1), color='black', arrowprops={'arrowstyle':'->'})
plt.plot([len(hist.Close)-3, len(hist.Close)-1], [hist.Close.iloc[-3], hist.Close.iloc[-3]], 'c--')
plt.annotate(r'$\Delta x={}-{}={}$'.format(0, 2, 0 - 2), (len(hist.Close)-2, hist.Close.iloc[-3]), (len(hist.Close)-2, hist.Close.iloc[-3] + height * 0.10), color='cyan', ha='center', va='center', arrowprops={'arrowstyle':'-[', 'color':'cyan'})
plt.plot([len(hist.Close)-1, len(hist.Close)-1], [hist.Close.iloc[-3], hist.Close.iloc[-1]], 'c--')
plt.annotate(r'$\Delta y={}-{}={}$'.format(hist.Close.iloc[-3], hist.Close.iloc[-1], round(hist.Close.iloc[-3] - hist.Close.iloc[-1], 2)), (len(hist.Close)-1, (hist.Close.iloc[-3] + hist.Close.iloc[-1]) / 2), (len(hist.Close)-2+0.5, (hist.Close.iloc[-3] + hist.Close.iloc[-1]) / 2), color='cyan', ha='center', va='center', arrowprops={'arrowstyle':'-[', 'color':'cyan'})
plt.title('Closing Price Points Demonstrating Line Calculations')
plt.xlabel('Date')
plt.ylabel('Price')
ax.xaxis.set_major_locator(ticker.IndexLocator(1, 0))
#ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
ax.xaxis.set_major_formatter(ticker.FuncFormatter(datefmt(hist.index)))
plt.setp(ax.get_xticklabels(), rotation=30, ha='right')
#plt.axis('equal')
def redraw(event):
#cxaxwdt, cyaxhgt = ax.get_xlim()[1] - ax.get_xlim()[0], ax.get_ylim()[1] - ax.get_ylim()[0]
bbox = ax.get_window_extent()#.transformed(plt.gcf().dpi_scale_trans.inverted())
drawdim = [bbox.width, bbox.height]
mvisual = (hist.Close.iloc[-3] - hist.Close.iloc[-1]) * drawdim[1] / yaxhgt / (-2 * drawdim[0] / xaxwdt)
intcpt = ((hist.Close.iloc[-3] + hist.Close.iloc[-1]) / 2 - ax.get_ylim()[0]) * drawdim[1] / yaxhgt - (-(drawdim[0] / 2) / mvisual)
#print(drawdim, ann.xyann, mvisual, intcpt, ax.get_xlim())
ann.xyann = ax.transData.inverted().transform(((drawdim[0] * 0.54)+bbox.x0, (-(drawdim[0] * 0.54)/mvisual + intcpt)+bbox.y0))
plt.gcf().canvas.draw_idle()
#idx = ax.callbacks.connect('xlim_changed', redraw)
#idy = ax.callbacks.connect('ylim_changed', redraw)
cid = plt.gcf().canvas.mpl_connect('resize_event', redraw)
plt.tight_layout()
#plt.gcf().canvas.draw()
#redraw(None)
#plt.gcf().canvas.draw()
#extent = plt.gcf().get_window_extent(renderer=plt.gcf().canvas.get_renderer()).transformed(plt.gcf().dpi_scale_trans.inverted())
plt.savefig(os.path.join(curdir, 'data', 'slopeint.svg'), format='svg')#, bbox_inches = extent, pad_inches = 0)
plt.savefig(os.path.join(curdir, 'data', 'slopeint.png'), format='png')#, bbox_inches = extent, pad_inches = 0)
#plt.show()
plt.gcf().canvas.mpl_disconnect(cid)
#ax.callbacks.disconnect(idx)
#ax.callbacks.disconnect(idy)
def fig_linregrs():
plt.clf()
plt.rcParams.update({'font.size': 14})
plt.gcf().set_size_inches(1024/plt.gcf().dpi, 768/plt.gcf().dpi) #plt.gcf().dpi=100
spec = gridspec.GridSpec(ncols=1, nrows=2, figure=plt.gcf(), height_ratios=[3, 1])
plt.subplot(spec[1, 0])
plt.axis('off')
plt.gca().get_xaxis().set_visible(False)
plt.gca().get_yaxis().set_visible(False)
plt.annotate(r'Mean of n-Points along x and y-axes: $\bar{x}=\frac{\sum_{i=1}^n{x_i}}{n}, \bar{y}=\frac{\sum_{i=1}^n{y_i}}{n}$' + '\n' +
r'Regression slope: $m=\frac{\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y})}{\sum_{i=1}^n(x_i-\bar{x})^2}$' + ' ' +
r'Regression intercept: $b=\bar{y}-m\bar{x}$' + '\n' +
r'Sum of Squared Residuals for expected $y_i$ $(\hat{y}_i)$: $SSR=\sum_{i=1}^n{(y_i-\hat{y}_i)^2}$' + '\n' +
r'Standard Error of Slope: $\sigma_m=\sqrt{\frac{SSR}{(n-2)\sum_{i=1}^n{(x_i-\bar{x})^2}}}$' + ' ' +
r'Standard Error of Intercept: $\sigma_b=\sigma_m\sqrt{\frac{\sum_{i=1}^nx_i^2}{n}}$', (0, 0))
plt.subplot(spec[0, 0])
plt.plot(range(len(hist.Close)-3, len(hist.Close)), hist.Close.iloc[-3:], 'bo')
xbar, ybar = (0 + 1 + 2) / 3, (hist.Close.iloc[-3] + hist.Close.iloc[-2] + hist.Close.iloc[-1]) / 3
height = hist.Close.iloc[-3:].max() - hist.Close.iloc[-3:].min()
plt.hlines(ybar, len(hist.Close)-3, len(hist.Close)-1, colors='r', linestyles='--')
plt.annotate(r'$\bar{{x}}=\frac{{{}+{}+{}}}{{{}}}={}$'.format(0, 1, 2, 3, 1), (xbar + len(hist.Close)-3, (hist.Close.iloc[-3:].min() + hist.Close.iloc[-3:].max()) / 2), (xbar + len(hist.Close)-3, hist.Close.iloc[-3:].min()), color='red', va='center', arrowprops={'arrowstyle':'->', 'color':'red'})
plt.vlines(xbar + len(hist.Close)-3, hist.Close.iloc[-3:].min(), hist.Close.iloc[-3:].max(), colors='r', linestyles='--')
plt.annotate(r'$\bar{{y}}=\frac{{{}+{}+{}}}{{{}}}={}$'.format(hist.Close.iloc[-3], hist.Close.iloc[-2], hist.Close.iloc[-1], 3, round(ybar, 2)), (len(hist.Close)-2, ybar), (len(hist.Close)-1, ybar - height * 0.1), color='red', va='top', ha='right', arrowprops={'arrowstyle':'->', 'color':'red'})
m = ((0 - xbar) * (hist.Close.iloc[-3] - ybar) + (1 - xbar) * (hist.Close.iloc[-2] - ybar) + (2 - xbar) * (hist.Close.iloc[-1] - ybar)) / (np.square(0-xbar)+np.square(1-xbar)+np.square(2-xbar))
b = ybar - m * xbar
SSR = np.square(hist.Close.iloc[-3] - (m * 0 + b)) + np.square(hist.Close.iloc[-2] - (m * 1 + b)) + np.square(hist.Close.iloc[-1] - (m * 2 + b))
err1 = np.sqrt(SSR / ((3 - 2) * (np.square(0-xbar)+np.square(1-xbar)+np.square(2-xbar))))
err2 = err1*np.sqrt((np.square(0)+np.square(1)+np.square(2))/3)
plt.annotate(r'$\hat{{y}}_0={}*{}+{}={}$'.format(round(m, 2), 0, round(b, 2), round(m*0+b, 2)), (len(hist.Close) - 3, m*0+b), (len(hist.Close) - 3 + 0.1, m*0+b), va='top', arrowprops={'arrowstyle':'->'})
plt.annotate(r'$\hat{{y}}_1={}*{}+{}={}$'.format(round(m, 2), 1, round(b, 2), round(m*1+b, 2)), (len(hist.Close) - 2, m*1+b), (len(hist.Close) - 2 + 0.15, m*1+b+height*0.01), arrowprops={'arrowstyle':'->'})
plt.annotate(r'$\hat{{y}}_2={}*{}+{}={}$'.format(round(m, 2), 2, round(b, 2), round(m*2+b, 2)), (len(hist.Close) - 1, m*2+b), (len(hist.Close) - 1 - 0.1, m*2+b+height*0.1), ha='right', arrowprops={'arrowstyle':'->'})
plt.plot([len(hist.Close) - 3, len(hist.Close) - 3], [hist.Close.iloc[-3], ybar], color='green')
plt.plot([len(hist.Close) - 2, len(hist.Close) - 2], [hist.Close.iloc[-2], ybar], color='green')
plt.plot([len(hist.Close) - 1, len(hist.Close) - 1], [hist.Close.iloc[-1], ybar], color='green')
plt.annotate(r'$y_0-\bar{{y}}={}$'.format(round(hist.Close.iloc[-3] - ybar, 2)), (len(hist.Close) - 3, (hist.Close.iloc[-3] + ybar) / 2 + height * 0.1), (len(hist.Close) - 3 + 0.1, (hist.Close.iloc[-3] + ybar) / 2 + height * 0.1), color='green', va='center', arrowprops={'arrowstyle':'-[', 'color':'green'})
plt.annotate(r'$y_1-\bar{{y}}={}$'.format(round(hist.Close.iloc[-2] - ybar, 2)), (len(hist.Close) - 2, (hist.Close.iloc[-2] + ybar) / 2 + height * 0.1), (len(hist.Close) - 2 + 0.1, (hist.Close.iloc[-2] + ybar) / 2 + height * 0.1), color='green', va='center', arrowprops={'arrowstyle':'-[', 'color':'green'})
plt.annotate(r'$y_2-\bar{{y}}={}$'.format(round(hist.Close.iloc[-1] - ybar, 2)), (len(hist.Close) - 1, (hist.Close.iloc[-1] + ybar) / 2), (len(hist.Close) - 1 - 0.1, (hist.Close.iloc[-1] + ybar) / 2), color='green', va='center', ha='right', arrowprops={'arrowstyle':'-[', 'color':'green'})
plt.plot([len(hist.Close) - 3, len(hist.Close) - 3], [hist.Close.iloc[-3], m*0+b], color='cyan')
plt.plot([len(hist.Close) - 2, len(hist.Close) - 2], [hist.Close.iloc[-2], m*1+b], color='cyan')
plt.plot([len(hist.Close) - 1, len(hist.Close) - 1], [hist.Close.iloc[-1], m*2+b], color='cyan')
plt.annotate(r'$y_0-\hat{{y}}={}$'.format(round(hist.Close.iloc[-3] - (m*0+b), 2)), (len(hist.Close) - 3, (hist.Close.iloc[-3] + m*0+b) / 2), (len(hist.Close) - 3 + 0.1, (hist.Close.iloc[-3] + m*0+b) / 2), color='cyan', va='center', arrowprops={'arrowstyle':'-[', 'color':'cyan'})
plt.annotate(r'$y_1-\hat{{y}}={}$'.format(round(hist.Close.iloc[-2] - (m*1+b), 2)), (len(hist.Close) - 2, (hist.Close.iloc[-2] + m*1+b) / 2), (len(hist.Close) - 2 + 0.1, (hist.Close.iloc[-2] + m*1+b) / 2), color='cyan', va='center', arrowprops={'arrowstyle':'-[', 'color':'cyan'})
plt.annotate(r'$y_2-\hat{{y}}={}$'.format(round(hist.Close.iloc[-1] - (m*2+b), 2)), (len(hist.Close) - 1, (hist.Close.iloc[-1] + m*2+b) / 2 - height * 0.05), (len(hist.Close) - 1 - 0.1, (hist.Close.iloc[-1] + m*2+b) / 2 - height * 0.05), color='cyan', va='center', ha='right', arrowprops={'arrowstyle':'-[', 'color':'cyan'})
plt.annotate((r'$m=\frac{{({}-{})*{}+({}-{})*{}+({}-{})*{}}}{{({}-{})^2+({}-{})^2+({}-{})^2}}$' + '\n' + '=${}$' + '\n' +
r'$SSR={}^2+{}^2+{}^2={}$' + '\n' +
r'$\sigma_m=\sqrt{{\frac{{{}}}{{({}-2)(({}-{})^2+({}-{})^2+({}-{})^2)}}}}={}$' + '\n' +
r'$\sigma_b={}\sqrt{{\frac{{{}^2+{}^2+{}^2}}{{{}}}}}={}$'
).format(0, round(xbar, 2), round(hist.Close.iloc[-3] - ybar, 2), 1, round(xbar, 2), round(hist.Close.iloc[-2] - ybar, 2), 2, round(xbar, 2), round(hist.Close.iloc[-1] - ybar, 2), 0, round(xbar, 2), 1, round(xbar, 2), 2, round(xbar, 2), round(m, 2),
round(hist.Close.iloc[-3] - (m*0+b), 2), round(hist.Close.iloc[-2] - (m*1+b), 2), round(hist.Close.iloc[-1] - (m*2+b), 2), round(SSR, 2),
round(SSR, 2), 3, 0, round(xbar, 2), 1, round(xbar, 2), 2, round(xbar, 2), round(err1, 2),
round(err1, 2), 0, 1, 2, 3, round(err2, 2)),
(len(hist.Close)-2, m * 1 + b), (len(hist.Close)-1, hist.Close.iloc[-3:].min()), color='blue', va='bottom', ha='right', arrowprops={'arrowstyle':'->', 'color':'blue'})
plt.annotate(r'$b={}-{}*{}={}$'.format(round(ybar, 2), round(m, 2), xbar, round(b, 2)), (len(hist.Close)-3, b), (len(hist.Close)-3+0.1, b), color='blue', ha='left', arrowprops={'arrowstyle':'->', 'color':'blue'})
plt.plot([len(hist.Close)-3, len(hist.Close)-1], [b, 2 * m + b])
ax = plt.gca()
plt.yticks(hist.Close.iloc[-3:])
plt.title('Closing Price Points Demonstrating Linear Regression')
plt.xlabel('Date')
plt.ylabel('Price')
ax.xaxis.set_major_locator(ticker.IndexLocator(1, 0))
#ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
ax.xaxis.set_major_formatter(ticker.FuncFormatter(datefmt(hist.index)))
plt.setp(ax.get_xticklabels(), rotation=30, ha='right')
plt.tight_layout()
#extent = plt.gcf().get_window_extent(renderer=plt.gcf().canvas.get_renderer()).transformed(plt.gcf().dpi_scale_trans.inverted())
plt.savefig(os.path.join(curdir, 'data', 'linregrs.svg'), format='svg')#, bbox_inches = extent, pad_inches = 0)
plt.savefig(os.path.join(curdir, 'data', 'linregrs.png'), format='png')#, bbox_inches = extent, pad_inches = 0)
#plt.show()
def fig_hough():
plt.clf()
plt.rcParams.update({'font.size': 14})
plt.gcf().set_size_inches(1280/plt.gcf().dpi, 1024/plt.gcf().dpi) #plt.gcf().dpi=100
spec = gridspec.GridSpec(ncols=1, nrows=2, figure=plt.gcf(), height_ratios=[3, 1])
plt.subplot(spec[1, 0])
plt.axis('off')
plt.gca().get_xaxis().set_visible(False)
plt.gca().get_yaxis().set_visible(False)
plt.annotate(r'Slope of Perpendicular Line: $m_p=-\frac{1}{m}, mm_p=-1$' + '\n' +
r'Perpencicular Line passing through Point: $y=\frac{x_0-x}{m}+y_0$' + '\n' +
r'Point $(x\prime, y\prime)$ of Intersection of Lines: $mx+b=\frac{x_0-x}{m}+y_0\equiv x\prime=\frac{x_0+my_0-mb}{m^2+1}, y\prime=mx\prime+b$' + '\n' +
r'Distance of Point to Line after simplification: $d=\frac{\left|b+mx_0-y_0\right|}{\sqrt{1 + m^2}}$' + '\n' +
r'$\rho=x \cos \theta+y \sin \theta$ where $\sin \theta=\frac{opposite}{hypotenuse}, \cos \theta=\frac{adjacent}{hypotenuse}$ and $y=\frac{\sin \theta}{\cos \theta}x$ while its perpendicular line is $y=-\frac{\cos \theta}{\sin \theta}x+\frac{\rho}{\sin \theta}$', (0, 0))
plt.subplot(spec[0, 0])
plt.plot([len(hist.Close)-10, len(hist.Close)-1], [hist.Close.iloc[-10], hist.Close.iloc[-1]], 'ro')
plt.plot([len(hist.Close)-10, len(hist.Close)-1], [hist.Close.iloc[-10], hist.Close.iloc[-1]], 'k-')
mn, mx = min(hist.Close.iloc[-10], hist.Close.iloc[-1]), max(hist.Close.iloc[-10], hist.Close.iloc[-1])
plt.plot([len(hist.Close)-10, len(hist.Close)-1], [mn, mx], 'b--')
plt.annotate(r'Diagonal length=$\sqrt{{{}^2+{}^2}}={}$'.format(9, round(mx-mn, 2), round(np.sqrt(np.square(9)+np.square(mx-mn)), 2)), (len(hist.Close)-1, mx), (len(hist.Close)-1-1, mx), ha='right', va='top', color='blue', arrowprops={'arrowstyle':'->', 'color':'blue'})
#plt.xlim(0, 30)
#plt.ylim(0, 30)
#plt.gca().add_line(plt.Line2D([0, 30], [30, 0]))
#height = hist.Close.iloc[-10:].max() - hist.Close.iloc[-10:].min()
ax = plt.gca()
#plt.ylim(ax.get_ylim()[0] - height * 0.2, ax.get_ylim()[1])
#plt.xlim(ax.get_xlim()[0] - 4, ax.get_xlim()[1])
m = (hist.Close.iloc[-10] - hist.Close.iloc[-1]) / (0 - 9)
b = hist.Close.iloc[-10] - m * 0 - mn #+ height * 0.2
plt.annotate(r'$y={}x+{}$'.format(round(m, 2), round(b, 2)), (len(hist.Close)-5.5, (mn+mx)/2), (len(hist.Close)-5.5, mn+(mx-mn)*0.7), arrowprops={'arrowstyle':'->'})
#axes origin is (len(hist.Close)-10, hist.Close.iloc[-10:].min()-height*0.2)
bperp = 0 #hist.Close.iloc[-10:].min() - (-1/m * 0)
#y0=mx0+b, y0=-x0/m+bperp, mx0+b=-x0/m+bperp, m^2x0+m(b-bperp)=-x0, x0(m^2+1)=m(bperp-b), x0=m(bperp-b)/(m^2+1) =(bperp-b)/(m-(-1/m))=(bperb-b)/((m^2+1)/m)
x0 = (m * (bperp - b)) / (m*m+1)
angle = np.arctan((-x0/m+bperp) / (x0))
#print((angle * 180 / np.pi, height, m, b, -1/m, bperp, x0, -x0/m+bperp, x0*m+b, np.abs(b)/np.sqrt(1+m*m)))
plt.annotate('', (len(hist.Close)-10, mn), (len(hist.Close)-10 + x0, mn + -x0/m + bperp), arrowprops=dict(arrowstyle="<|-", color='red'))
plt.gca().add_patch(mpatches.Wedge((len(hist.Close)-10 + x0, mn + -x0/m + bperp), 1, angle * 180 / np.pi - 180, angle * 180 / np.pi - 90, fill=False))
plt.gca().add_patch(mpatches.Wedge((len(hist.Close)-10 + x0, mn + -x0/m + bperp), 0.5, angle * 180 / np.pi - 270, angle * 180 / np.pi - 180, fill=False))
plt.annotate(r'$90\circ$', (len(hist.Close)-10 + x0 - 1, mn + -x0/m + bperp - 2))
plt.annotate(r'$90\circ$', (len(hist.Close)-10 + x0 - 1, mn + -x0/m + bperp + 1))
plt.gca().add_patch(mpatches.Wedge((len(hist.Close)-10, mn), 3, 0, angle * 180 / np.pi, fill=False))
plt.annotate(r'$\theta={}^\circ$'.format(round(angle * 180/np.pi, 2)), (len(hist.Close) - 6.75, mn+0.1))
plt.gca().add_patch(mpatches.Wedge((len(hist.Close)-10, mx), 3, 270, 270 + angle * 180 / np.pi, fill=False))
plt.annotate(r'$\theta$', (len(hist.Close)-9.5, mx-5))
plt.annotate((r'$\rho=\frac{{\left|{}+{}*{}-{}\right|}}{{\sqrt{{1 + {}^2}}}}$' + '\n' + '$={}\cos {}+{}\sin {}$' + '\n' + '$={}\cos {}+{}\sin {}$' + '\n' + '$={}$').format(
round(b, 2), round(m, 2), 0, 0, round(m, 2),
0, round(angle*180/np.pi, 2), round(hist.Close.iloc[-10]-mn, 2), round(angle*180/np.pi, 2), 9, round(angle*180/np.pi, 2), hist.Close.iloc[-1]-mn, round(angle*180/np.pi, 2), round(0 * np.cos(angle) + (hist.Close.iloc[-10]-mn) * np.sin(angle), 2)),
(len(hist.Close)-10+x0/2, mn + (-x0/m + bperp) / 2), (len(hist.Close)-10+x0/2, mn + (-x0/m + bperp) / 2+0.9), ha='center', color='red', arrowprops=dict(arrowstyle="->", color='red'))
plt.plot([len(hist.Close)-10, len(hist.Close)-1], [mn, mn], 'k-')
plt.plot([len(hist.Close)-10, len(hist.Close)-10], [mn, mx], 'k-')
plt.annotate('{}'.format(9), (len(hist.Close)-5.5, mn), (len(hist.Close)-5.5, mn+0.5), ha='center', arrowprops=dict(arrowstyle="->"))
plt.annotate('{}'.format(round(mx-mn, 2)), (len(hist.Close)-10, (mn+mx)/2), (len(hist.Close)-10+0.5, (mn+mx)/2), ha='left', arrowprops=dict(arrowstyle="->"))
plt.yticks([hist.Close.iloc[-10], hist.Close.iloc[-1]])
plt.title('Closing Price Points Demonstrating Hough transform accumulation of rho-theta for 2 point line')
plt.xlabel('Date')
plt.ylabel('Price')
ax.xaxis.set_major_locator(ticker.IndexLocator(1, 0))
#ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
ax.xaxis.set_major_formatter(ticker.FuncFormatter(datefmt(hist.index)))
plt.setp(ax.get_xticklabels(), rotation=30, ha='right')
plt.tight_layout()
#extent = ann.get_window_extent(renderer=plt.gcf().canvas.get_renderer()).transformed(plt.gcf().dpi_scale_trans.inverted())
plt.savefig(os.path.join(curdir, 'data', 'hough.svg'), format='svg')#, bbox_inches = extent, pad_inches = 0)
plt.savefig(os.path.join(curdir, 'data', 'hough.png'), format='png')#, bbox_inches = extent, pad_inches = 0)
#plt.show()
def fig_minima():
h = hist[-10:]
mins, maxs = calc_support_resistance(h.Close)
minimaIdxs, pmin, mintrend, minwindows = mins
maximaIdxs, pmax, maxtrend, maxwindows = maxs
plt.clf()
plt.gcf().set_size_inches(1024/plt.gcf().dpi, 768/plt.gcf().dpi) #plt.gcf().dpi=100
plt.subplot(111)
plt.plot(minimaIdxs, [h.Close.iloc[x] for x in minimaIdxs], 'yo', label='Minima')
plt.plot(maximaIdxs, [h.Close.iloc[x] for x in maximaIdxs], 'bo', label='Maxima')
from findiff import FinDiff
dx = 1 #grid scale could be amplified with pennies 0.01
d_dx = FinDiff(0, dx, 1) #acc=3 #for 5-point stencil, currenly uses +/-1 day only
d2_dx2 = FinDiff(0, dx, 2) #acc=3 #for 5-point stencil, currenly uses +/-1 day only
clarr = np.asarray(h.Close)
mom = d_dx(clarr)
momacc = d2_dx2(clarr)
for x in range(len(h)):
ann = plt.gca().annotate('{}\n'.format(round(mom[x], 2), round(momacc[x], 2)), (x, h.Close.iloc[x]), (x, h.Close.iloc[x] - (h.Close.max() - h.Close.min()) / 3), ha='center') #bbox=dict(boxstyle='round', fc='gray', alpha=0.3)
#plt.rcParams['font.size']
ext = ann.get_window_extent(renderer = plt.gcf().canvas.get_renderer()).transformed(plt.gca().transData.inverted())
ann = plt.gca().annotate('{}'.format(round(momacc[x], 2)), (x, ext.y0), ha='center', va='bottom', color='r')
next = ann.get_window_extent(renderer = plt.gcf().canvas.get_renderer()).transformed(plt.gca().transData.inverted())
patch = plt.gca().add_artist(mpatches.FancyBboxPatch((min(ext.x0, next.x0)+0.1, ext.y0), width=max(ext.width, next.width)-0.2, height=ext.height+3, boxstyle='round', fc='gray', alpha=0.3))
plt.gca().annotate(''.format(round(mom[x], 2), round(momacc[x], 2)), (x, h.Close.iloc[x]), (x, ext.y1+3), arrowprops={'arrowstyle':'-|>'})
plt.ylim(h.Close.min() - (h.Close.max() - h.Close.min()) / 2.8, h.Close.max() + (h.Close.max() - h.Close.min()) / 10)
p1 = mpatches.Patch(color='black', label='Velocity')
p2 = mpatches.Patch(color='red', label='Acceleration')
plt.plot(range(len(h.index)), h.Close, 'g--', label='Close Price')
plt.xlim(plt.gca().get_xlim()[0] - 0.5, plt.gca().get_xlim()[1] + 0.5)
plt.title('Closing Price with Pivot Points, Momentum, Acceleration')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend(handles=plt.gca().get_legend_handles_labels()[0] + [p1, p2])
plt.gca().xaxis.set_major_locator(ticker.MaxNLocator(6))
#plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
plt.gca().xaxis.set_major_formatter(ticker.FuncFormatter(datefmt(h.index)))
plt.setp(plt.gca().get_xticklabels(), rotation=30, ha='right')
plt.savefig(os.path.join(curdir, 'data', 'extrema.svg'), format='svg', bbox_inches = 'tight')
plt.savefig(os.path.join(curdir, 'data', 'extrema.png'), format='png', bbox_inches = 'tight')
#plt.show()
def fig_reimann():
mins, maxs = calc_support_resistance(hist[-250:].Close, sortError = True)
minimaIdxs, pmin, mintrend, minwindows = mins
maximaIdxs, pmax, maxtrend, maxwindows = maxs
plt.clf()
plt.gcf().set_size_inches(800/plt.gcf().dpi, 720/plt.gcf().dpi) #plt.gcf().dpi=100
plt.subplot(211)
plt.title('Closing Price with Resistance and Area')
plt.xlabel('Date')
plt.ylabel('Price')
trendline = maxtrend[0]
base = trendline[0][0]
m, b, ser = trendline[1][0], trendline[1][1], hist[-250:][base:trendline[0][-1]+1].Close
plt.plot(range(base, trendline[0][-1]+1), hist[-250:][base:trendline[0][-1]+1].Close, 'b-', label='Price')
plt.plot((base, trendline[0][-1]+1), (m * base + b, m * (trendline[0][-1]+1) + b), 'r-', label='Resistance')
plt.gca().xaxis.set_major_locator(ticker.MaxNLocator(6))
#plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
plt.gca().xaxis.set_major_formatter(ticker.FuncFormatter(datefmt(hist[-250:].index)))
plt.setp(plt.gca().get_xticklabels(), rotation=30, ha='right')
plt.legend()
plt.subplot(212)
plt.ylabel('Price Difference from Trend')
#plt.plot(hist.Close.iloc[-250:])
isMin = False
S = sum([max(0, (m * (x+base) + b) - y if isMin else y - (m * (x+base) + b)) for x, y in enumerate(ser)])
area = S / len(ser)
for x, y in enumerate(ser):
plt.bar(x, (m * (x+base) + b) - y if isMin else y - (m * (x+base) + b), color='r' if (y < (m * (x+base) + b) if isMin else y > (m * (x+base) + b)) else 'gray')
plt.annotate(r'S={}, $\frac{{{}}}{{{}}}$={}$\frac{{\$}}{{day}}$'.format(round(S, 2), round(S, 2), len(range(base, trendline[0][-1]+1)), round(area, 2)) + '\n' + r'Reimann Sum where $\Delta x=x_i-x_{i-1}$,' + '\n' + '$x_i^* \in [x_{i-1}, x_i]$: $S=\sum_{i=1}^n{f(x_i^*)\Delta x_i}$', (0, plt.gca().get_ylim()[0]+5), va='bottom')
plt.gca().xaxis.set_major_locator(ticker.MaxNLocator(6))
#plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
plt.gca().xaxis.set_major_formatter(ticker.FuncFormatter(datefmt(hist[-250:].index)))
plt.setp(plt.gca().get_xticklabels(), rotation=30, ha='right')
plt.savefig(os.path.join(curdir, 'data', 'reimann.svg'), format='svg', bbox_inches = 'tight')
plt.savefig(os.path.join(curdir, 'data', 'reimann.png'), format='png', bbox_inches = 'tight')
#plt.show()
def fig_suppres():
plot_sup_res_date(hist[-250:].Close, hist[-250:].index, fromwindows=False, sortError = True)
plt.savefig(os.path.join(curdir, 'data', 'suppreserr.svg'), format='svg', bbox_inches = 'tight')
plt.savefig(os.path.join(curdir, 'data', 'suppreserr.png'), format='png', bbox_inches = 'tight')
plot_sup_res_date(hist[-250:].Close, hist[-250:].index, fromwindows=False)
plt.savefig(os.path.join(curdir, 'data', 'suppres.svg'), format='svg', bbox_inches = 'tight')
plt.savefig(os.path.join(curdir, 'data', 'suppres.png'), format='png', bbox_inches = 'tight')
import matplotlib.gridspec as gridspec
import matplotlib.patches as mpatches
sz = plt.gcf().get_size_inches()
fig_slopeint()
fig_linregrs()
fig_hough()
fig_minima()
fig_reimann()
plt.gcf().set_size_inches(sz)
fig_suppres()
def test_sup_res(curdir):
data = [0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 0]
data = [float(x) for x in data]
result = (([6, 12, 18], [0.0, 0.0], [([6, 12, 18], (0.0, 0.0, 0.0, 0.0, 0.0, 0.0))], [[([6, 12, 18], (0.0, 0.0, 0.0, 0.0, 0.0, 0.0))]]), ([3, 9, 15, 21], [0.0, 3.0], [([3, 9, 15, 21], (0.0, 3.0, 0.0, 0.0, 0.0, 0.0))], [[([3, 9, 15, 21], (0.0, 3.0, 0.0, 0.0, 0.0, 0.0))]]))
assert result == calc_support_resistance(data, extmethod=METHOD_NAIVE)
assert result == calc_support_resistance(data, extmethod=METHOD_NAIVECONSEC)
assert result == calc_support_resistance(data)
assert result == calc_support_resistance(np.array(data))
import pandas as pd
assert result == calc_support_resistance(pd.Series(data))
assert result == calc_support_resistance(data, method=METHOD_NCUBED)
assert result == calc_support_resistance(data, method=METHOD_HOUGHPOINTS)
assert result == calc_support_resistance(data, method=METHOD_HOUGHLINES)
assert result == calc_support_resistance(data, method=METHOD_PROBHOUGH)
data = [0, 1, 2, 3, 2, 1, 1, 1, 2, 4, 3, 2, 2, 2, 3, 5, 4, 3, 3, 3, 4, 6, 5, 4, 4]
data = [float(x) for x in data]
result = (([], [np.nan, np.nan], [], [[]]), ([3, 9, 15, 21], [0.16666666666666677, 2.499999999999998], [([3, 9, 15, 21], (0.16666666666666666, 2.5, 0.0, 0.0, 0.0, 0.0))], [[([3, 9, 15, 21], (0.16666666666666666, 2.5, 0.0, 0.0, 0.0, 0.0))]]))
assert result == calc_support_resistance(data, extmethod=METHOD_NAIVE)
result = (([7, 13, 19], [0.1666666666666666, -0.1666666666666652], [([7, 13, 19], (0.16666666666666666, -0.16666666666666652, 0.0, 0.0, 0.0, 0.0))], [[([7, 13, 19], (0.16666666666666666, -0.16666666666666652, 0.0, 0.0, 0.0, 0.0))]]), ([3, 9, 15, 21], [0.16666666666666677, 2.499999999999998], [([3, 9, 15, 21], (0.16666666666666666, 2.5, 0.0, 0.0, 0.0, 0.0))], [[([3, 9, 15, 21], (0.16666666666666666, 2.5, 0.0, 0.0, 0.0, 0.0))]]))
assert result == calc_support_resistance(data, extmethod=METHOD_NAIVECONSEC)
result = (([23], [np.nan, np.nan], [], [[]]), ([3, 9, 15, 21], [0.16666666666666677, 2.499999999999998], [([3, 9, 15, 21], (0.16666666666666666, 2.5, 0.0, 0.0, 0.0, 0.0))], [[([3, 9, 15, 21], (0.16666666666666666, 2.5, 0.0, 0.0, 0.0, 0.0))]]))
assert result == calc_support_resistance(data)
assert result == calc_support_resistance(data, method=METHOD_NCUBED)
assert result == calc_support_resistance(data, method=METHOD_HOUGHPOINTS)
assert result == calc_support_resistance(data, method=METHOD_HOUGHLINES)
assert result == calc_support_resistance(data, method=METHOD_PROBHOUGH)
import yfinance as yf #pip install yfinance
tick = yf.Ticker('^GSPC')
hist = tick.history(period="max", rounding=True)
plot_sup_res_learn(curdir, hist)
import matplotlib.pyplot as plt
plot_sup_res_date(hist[-250:].Close, hist[-250:].index)
plt.show()
plot_sup_res_date((hist[-250:].Close, None), hist[-250:].index)
plt.show()
plot_sup_res_date((None, hist[-250:].Close), hist[-250:].index)
plt.show()
plot_sup_res_date((hist[-250:].Low, hist[-250:].High), hist[-250:].index)
plt.show()
plt.clf()
return None
METHOD_NAIVE, METHOD_NAIVECONSEC, METHOD_NUMDIFF = 0, 1, 2
METHOD_NCUBED, METHOD_NSQUREDLOGN, METHOD_HOUGHPOINTS, METHOD_HOUGHLINES, METHOD_PROBHOUGH = 0, 1, 2, 3, 4
def check_num_alike(h):
if type(h) is list and all([isinstance(x, (bool, int, float)) for x in h]): return True
elif type(h) is np.ndarray and h.ndim==1 and h.dtype.kind in 'biuf': return True
else:
import pandas as pd
if type(h) is pd.Series and h.dtype.kind in 'biuf': return True
else: return False
def get_extrema(h, extmethod=METHOD_NUMDIFF, accuracy=1):
#h must be single dimensional array-like object e.g. List, np.ndarray, pd.Series
if type(h) is tuple and len(h) == 2 and (h[0] is None or check_num_alike(h[0])) and (h[1] is None or check_num_alike(h[1])) and (not h[0] is None or not h[1] is None):
hmin, hmax = h[0], h[1]
if not h[0] is None and not h[1] is None and len(hmin) != len(hmax): #not strict requirement, but contextually ideal
raise ValueError('h does not have a equal length minima and maxima data')
elif check_num_alike(h): hmin, hmax = None, None
else: raise ValueError('h is not list, numpy ndarray or pandas Series of numeric values or a 2-tuple thereof')
if extmethod == METHOD_NAIVE:
#naive method
import pandas as pd
def get_minmax(h):
rollwin = pd.Series(h).rolling(window=3, min_periods=1, center=True)
minFunc = lambda x: len(x) == 3 and x.iloc[0] > x.iloc[1] and x.iloc[2] > x.iloc[1]
maxFunc = lambda x: len(x) == 3 and x.iloc[0] < x.iloc[1] and x.iloc[2] < x.iloc[1]
numdiff_extrema = lambda func: np.flatnonzero(rollwin.aggregate(func)).tolist()
return minFunc, maxFunc, numdiff_extrema
elif extmethod == METHOD_NAIVECONSEC:
#naive method collapsing duplicate consecutive values
import pandas as pd
def get_minmax(h):
hist = pd.Series(h)
rollwin = hist.loc[hist.shift(-1) != hist].rolling(window=3, center=True)
minFunc = lambda x: x.iloc[0] > x.iloc[1] and x.iloc[2] > x.iloc[1]
maxFunc = lambda x: x.iloc[0] < x.iloc[1] and x.iloc[2] < x.iloc[1]
def numdiff_extrema(func):
x = rollwin.aggregate(func)
return x[x == 1].index.tolist()
return minFunc, maxFunc, numdiff_extrema
elif extmethod == METHOD_NUMDIFF:
#pip install findiff
from findiff import FinDiff
dx = 1 #1 day interval
d_dx = FinDiff(0, dx, 1, acc=accuracy) #acc=3 #for 5-point stencil, currenly uses +/-1 day only
d2_dx2 = FinDiff(0, dx, 2, acc=accuracy) #acc=3 #for 5-point stencil, currenly uses +/-1 day only
def get_minmax(h):
clarr = np.asarray(h, dtype=np.float64)
mom, momacc = d_dx(clarr), d2_dx2(clarr)
#print(mom[-10:], momacc[-10:])
#numerical derivative will yield prominent extrema points only
def numdiff_extrema(func):
return [x for x in range(len(mom))
if func(x) and
(mom[x] == 0 or #either slope is 0, or it crosses from positive to negative with the closer to 0 of the two chosen or prior if a tie
(x != len(mom) - 1 and (mom[x] > 0 and mom[x+1] < 0 and h[x] >= h[x+1] or #mom[x] >= -mom[x+1]
mom[x] < 0 and mom[x+1] > 0 and h[x] <= h[x+1]) or #-mom[x] >= mom[x+1]) or
x != 0 and (mom[x-1] > 0 and mom[x] < 0 and h[x-1] < h[x] or #mom[x-1] < -mom[x] or
mom[x-1] < 0 and mom[x] > 0 and h[x-1] > h[x])))] #-mom[x-1] < mom[x])))]
return lambda x: momacc[x] > 0, lambda x: momacc[x] < 0, numdiff_extrema
else: raise ValueError('extmethod must be METHOD_NAIVE, METHOD_NAIVECONSEC, METHOD_NUMDIFF')
if hmin is None and hmax is None:
minFunc, maxFunc, numdiff_extrema = get_minmax(h)
return numdiff_extrema(minFunc), numdiff_extrema(maxFunc)
if not hmin is None:
minf = get_minmax(hmin)
if hmax is None: return minf[2](minf[0])
if not hmax is None:
maxf = get_minmax(hmax)
if hmin is None: return maxf[2](maxf[1])
return minf[2](minf[0]), maxf[2](maxf[1])
#returns (list of minima indexes, list of maxima indexes, [support slope coefficient, intersect], [resistance slope coefficient, intersect], [[support point indexes], (slope, intercept, residual, slope error, intercept error, area on wrong side of trend line per time unit)]
def calc_support_resistance(h, extmethod = METHOD_NUMDIFF, method=METHOD_NSQUREDLOGN,
window=125, errpct=0.005, hough_scale=0.01, hough_prob_iter=10,
sortError=False, accuracy=1):
if not type(window) is int:
raise ValueError('window must be of type int')
if not type(errpct) is float:
raise ValueError('errpct must be of type float')
if not type(hough_scale) is float:
raise ValueError('house_scale must be of type float')
if not type(hough_prob_iter) is int:
raise ValueError('house_prob_iter must be of type int')
if not type(sortError) is bool:
raise ValueError('sortError must be True of False')
#h = hist.Close.tolist()
if type(h) is tuple and len(h) == 2 and (h[0] is None or check_num_alike(h[0])) and (h[1] is None or check_num_alike(h[1])) and (not h[0] is None or not h[1] is None):
if not h[0] is None and not h[1] is None and len(h[0]) != len(h[1]): #not strict requirement, but contextually ideal
raise ValueError('h does not have a equal length minima and maxima data')
hmin, hmax, len_h = h[0], h[1], len(h[1 if h[0] is None else 0])
elif check_num_alike(h): hmin, hmax, len_h = None, None, len(h)
else: raise ValueError('h is not list, numpy ndarray or pandas Series of numeric values or a 2-tuple thereof')
#https://stackoverflow.com/questions/8587047/support-resistance-algorithm-technical-analysis/8590007#8590007
#print((minimaIdxs[-10:], maximaIdxs[-10:]))
#https://en.wikipedia.org/wiki/Trend_line_(technical_analysis)
#It is formed when a diagonal line can be drawn between a minimum of three or more price pivot points. A line can be drawn between any two points, but it does not qualify as a trend line until tested. Hence the need for the third point, the test.
#Given N points on the plane, what is an efficient algorithm to find all the sets of 3 or more collinear points?
#also principle of optimality - for each point, calculate angle formed by every other group of 2 points, check for 180 degree angled points also O(n^3)
#sort the points in some order, and find slope for selected origin point to all other points, sort and check if identical slopes, move on O(n^2*log(n))
#Hough transform solves with linear complexity
#https://en.wikipedia.org/wiki/Regression_analysis#Linear_regression
#line of best fit using least squared method:
#Xbar=sum of all x over number of x, Ybar=sum of all y over number of y
#m=sum((x-Xbar) * (y-Ybar) for all (x, y)) / sum((x-Xbar)^2 for all x), b=Ybar-m*Xbar
#standard error of regression of slope: sqrt(sum((y-yexpected)^2 for all y) / (n-2)) / sqrt(sum((x-Xbar)^2 for all x))
#standard error of regression of intercept: (standard error of regression of slope) * sqrt(sum(x^2 for all x)/n)
def get_bestfit3(x0, y0, x1, y1, x2, y2):
xbar, ybar = (x0 + x1 + x2) / 3, (y0 + y1 + y2) / 3
xb0, yb0, xb1, yb1, xb2, yb2 = x0-xbar, y0-ybar, x1-xbar, y1-ybar, x2-xbar, y2-ybar
xs = xb0*xb0+xb1*xb1+xb2*xb2
m = (xb0*yb0+xb1*yb1+xb2*yb2) / xs
b = ybar - m * xbar
ys0, ys1, ys2 = (y0 - (m * x0 + b)),(y1 - (m * x1 + b)),(y2 - (m * x2 + b))
ys = ys0*ys0+ys1*ys1+ys2*ys2
ser = np.sqrt(ys / xs)
return m, b, ys, ser, ser * np.sqrt((x0*x0+x1*x1+x2*x2)/3)
def get_bestfit(pts):
xbar, ybar = [sum(x) / len(x) for x in zip(*pts)]
def subcalc(x, y):
tx, ty = x - xbar, y - ybar
return tx * ty, tx * tx, x * x
(xy, xs, xx) = [sum(q) for q in zip(*[subcalc(x, y) for x, y in pts])]
m = xy / xs
b = ybar - m * xbar
ys = sum([np.square(y - (m * x + b)) for x, y in pts])
ser = np.sqrt(ys / ((len(pts) - 2) * xs))
return m, b, ys, ser, ser * np.sqrt(xx / len(pts))
def get_trend(Idxs, h, fltpct, min_h, max_h):
trend = []
for x in range(len(Idxs)): #unfortunately an O(n(n-1)(n-2))=O((n^2-n)(n-2))=O(n^3-3n^2-2n)~=O(n^3) algorithm but meets the strict definition of a trendline
for y in range(x+1, len(Idxs)):
#slope = (h[Idxs[x]] - h[Idxs[y]]) / (Idxs[x] - Idxs[y]) #m=dy/dx #if slope 0 then intercept does not exist constant y where y=b
#intercept = h[Idxs[x]] - slope * Idxs[x] #y=mx+b, b=y-mx
for z in range(y+1, len(Idxs)):
#distance = abs(slope * Idxs[z] + intercept - h[Idxs[z]]) #distance to y value based on x with slope-intercept
trend.append(([Idxs[x], Idxs[y], Idxs[z]], get_bestfit3(Idxs[x], h[Idxs[x]], Idxs[y], h[Idxs[y]], Idxs[z], h[Idxs[z]])))
return list(filter(lambda val: val[1][3] <= fltpct, trend))
def get_trend_opt(Idxs, h, fltpct, min_h, max_h):
slopes, trend = [], []
for x in range(len(Idxs)): #O(n^2*log n) algorithm
slopes.append([])
for y in range(x+1, len(Idxs)):
slope = (h[Idxs[x]] - h[Idxs[y]]) / (Idxs[x] - Idxs[y]) #m=dy/dx #if slope 0 then intercept does not exist constant y where y=b
#intercept = h[Idxs[x]] - slope * Idxs[x] #y=mx+b, b=y-mx
slopes[x].append((slope, y))
for x in range(len(Idxs)):
slopes[x].sort() #key=lambda val: val[0])
CurIdxs = [Idxs[x]]
for y in range(0, len(slopes[x])):
#distance = abs(slopes[x][y][2] * slopes[x][y+1][1] + slopes[x][y][3] - h[slopes[x][y+1][1]])
CurIdxs.append(Idxs[slopes[x][y][1]])
if len(CurIdxs) < 3: continue
res = get_bestfit([(p, h[p]) for p in CurIdxs])
if res[3] <= fltpct:
CurIdxs.sort()
if len(CurIdxs) == 3:
trend.append((CurIdxs, res))
CurIdxs = list(CurIdxs)
else: CurIdxs, trend[-1] = list(CurIdxs), (CurIdxs, res)
#if len(CurIdxs) >= MaxPts: CurIdxs = [CurIdxs[0], CurIdxs[-1]]
else: CurIdxs = [CurIdxs[0], CurIdxs[-1]] #restart search from this point
return trend
def make_image(Idxs, h, min_h, max_h):
#np.arctan(2/len_h), np.arctan(2/int((hist.Close.max() - m + 1) * (1/hough_scale))) #minimal angles to find all points
max_size = int(np.ceil(2/np.tan(np.pi / (360 * 5)))) #~1146
m, tested_angles = min_h, np.linspace(-np.pi / 2, np.pi / 2, 360*5) #degree of precision from 90 to 270 degrees with 360*5 increments
height = int((max_h - m + 0.01) * (1/hough_scale))
mx = min(max_size, height)
scl = (1/hough_scale) * mx / height
image = np.zeros((mx, len_h)) #in rows, columns or y, x image format
for x in Idxs:
image[int((h[x] - m) * scl), x] = 255
return image, tested_angles, scl, m
def find_line_pts(Idxs, x0, y0, x1, y1, h, fltpct):
s = (y0 - y1) / (x0 - x1)
i, dnm = y0 - s * x0, np.sqrt(1 + s*s)
dist = [(np.abs(i+s*x-h[x])/dnm, x) for x in Idxs]
dist.sort() #(key=lambda val: val[0])
pts, res = [], None
for x in range(len(dist)):
pts.append((dist[x][1], h[dist[x][1]]))
if len(pts) < 3: continue
r = get_bestfit(pts)
if r[3] > fltpct:
pts = pts[:-1]
break
res = r
pts = [x for x, _ in pts]
pts.sort()
return pts, res
def hough_points(pts, width, height, thetas):
diag_len = int(np.ceil(np.sqrt(width * width + height * height)))
rhos = np.linspace(-diag_len, diag_len, diag_len * 2.0)
# Cache some resuable values
cos_t = np.cos(thetas)
sin_t = np.sin(thetas)
num_thetas = len(thetas)
# Hough accumulator array of theta vs rho
accumulator = np.zeros((2 * diag_len, num_thetas), dtype=np.uint64)
# Vote in the hough accumulator
for i in range(len(pts)):
x, y = pts[i]
for t_idx in range(num_thetas):
# Calculate rho. diag_len is added for a positive index
rho = int(round(x * cos_t[t_idx] + y * sin_t[t_idx])) + diag_len
accumulator[rho, t_idx] += 1
return accumulator, thetas, rhos
def houghpt(Idxs, h, fltpct, min_h, max_h):
max_size = int(np.ceil(2/np.tan(np.pi / (360 * 5)))) #~1146
m, tested_angles = min_h, np.linspace(-np.pi / 2, np.pi / 2, 360*5) #degree of precision from 90 to 270 degrees with 360*5 increments
height = int((max_h - m + 1) * (1/hough_scale))
mx = min(max_size, height)
scl = (1/hough_scale) * mx / height
acc, theta, d = hough_points([(x, int((h[x] - m) * scl)) for x in Idxs], mx, len_h, np.linspace(-np.pi / 2, np.pi / 2, 360*5))
origin, lines = np.array((0, len_h)), []
for x, y in np.argwhere(acc >= 3):
dist, angle = d[x], theta[y]
y0, y1 = (dist - origin * np.cos(angle)) / np.sin(angle)
y0, y1 = y0 / scl + m, y1 / scl + m
pts, res = find_line_pts(Idxs, 0, y0, len_h, y1, h, fltpct)
if len(pts) >= 3: lines.append((pts, res))
return lines
def hough(Idxs, h, fltpct, min_h, max_h):
image, tested_angles, scl, m = make_image(Idxs, h, min_h, max_h)
from skimage.transform import hough_line, hough_line_peaks
hl, theta, d = hough_line(image, theta=tested_angles)
origin, lines = np.array((0, image.shape[1])), []
for pts, angle, dist in zip(*hough_line_peaks(hl, theta, d, threshold=2)): #> threshold
y0, y1 = (dist - origin * np.cos(angle)) / np.sin(angle)
y0, y1 = y0 / scl + m, y1 / scl + m
pts, res = find_line_pts(Idxs, 0, y0, image.shape[1], y1, h, fltpct)
if len(pts) >= 3: lines.append((pts, res))
return lines
def prob_hough(Idxs, h, fltpct, min_h, max_h):
image, tested_angles, scl, m = make_image(Idxs, h, min_h, max_h)
from skimage.transform import probabilistic_hough_line
lines = []
for x in range(hough_prob_iter):
lines.extend(probabilistic_hough_line(image, threshold=2, theta=tested_angles, line_length=0,
line_gap=int(np.ceil(np.sqrt(np.square(image.shape[0]) + np.square(image.shape[1]))))))
l = []
for (x0, y0), (x1, y1) in lines:
if x0 == x1: continue
if x1 < x0: (x0, y0), (x1, y1) = (x1, y1), (x0, y0)
y0, y1 = y0 / scl + m, y1 / scl + m
pts, res = find_line_pts(Idxs, x0, y0, x1, y1, h, fltpct)
if len(pts) >= 3: l.append((pts, res))
return l
def merge_lines(Idxs, trend, h, fltpct):
for x in Idxs:
l = []
for i, (p, r) in enumerate(trend):
if x in p: l.append((r[0], i))
l.sort() #key=lambda val: val[0])
if len(l) > 1: CurIdxs = list(trend[l[0][1]][0])
for (s, i) in l[1:]:
CurIdxs += trend[i][0]
CurIdxs = list(dict.fromkeys(CurIdxs))
CurIdxs.sort()
res = get_bestfit([(p, h[p]) for p in CurIdxs])
if res[3] <= fltpct: trend[i-1], trend[i], CurIdxs = ([], None), (CurIdxs, res), list(CurIdxs)
else: CurIdxs = list(trend[i][0]) #restart search from here
return list(filter(lambda val: val[0] != [], trend))
def measure_area(trendline, isMin, h): # Reimann sum of line to discrete time series data
#first determine the time range, and subtract the line values to obtain a single function
#support subtracts the line minus the series and eliminates the negative values
#resistances subtracts the series minus the line and eliminate the negatives
base = trendline[0][0]
m, b, ser = trendline[1][0], trendline[1][1], h[base:trendline[0][-1]+1]
return sum([max(0, (m * (x+base) + b) - y if isMin else y - (m * (x+base) + b)) for x, y in enumerate(ser)]) / len(ser)
def window_results(trends, isMin, h):
windows = [[] for x in range(len(divide)-1)]
for x in trends:
fstwin, lastwin = int(x[0][0] / window), int(x[0][-1] / window)
wins = [[] for _ in range(fstwin, lastwin+1)]
for y in x[0]: wins[int(y / window) - fstwin].append(y)
for y in range(0, lastwin-fstwin):
if len(wins[y+1]) == 0 and len(wins[y]) >= 3: windows[fstwin+y].append(wins[y])
if len(wins[y]) + len(wins[y + 1]) >= 3:
windows[fstwin+y+1].append(wins[y] + wins[y+1])
if lastwin-fstwin==0 and len(wins[0]) >= 3: windows[fstwin].append(wins[0])
def fitarea(x):
fit = get_bestfit([(y, h[y]) for y in x])
return (x, fit + (measure_area((x, fit), isMin, h),))
def dosort(x):
x.sort(key = lambda val: val[1][skey])
return x
return [dosort(list(fitarea(pts) for pts in x)) for x in windows]
#print((mintrend[:5], maxtrend[:5]))
#find all places where derivative is 0 - in finite case when it crosses positive to negative and choose the closer to 0 value
#second derivative being positive or negative decides if they are minima or maxima
#now for all pairs of 3 points construct the average line, rate it based on # of additional points, # of points on the wrong side of the line, and the margin of error for the line passing through all of them
#finally select the best based on this rating
#first find the peaks and troughs
#https://github.com/dysonance/Trendy/blob/master/trendy.py #not proper trendlines only takes extremal points, and next best extrema, not 3 points
#https://github.com/harttraveller/roughsr2/blob/master/roughsr2.py
#https://www.candlestick.ninja/2019/02/support-and-resistance.html
#https://www.candlestick.ninja/2019/02/identifying-support-and-resistance-part2.html
#zmin, zmne, _, _, _ = np.polyfit(minimaIdxs, ymin, 1, full=True) #y=zmin[0]*x+zmin[1]
#pmin = np.poly1d(zmin).c
#zmax, zmxe, _, _, _ = np.polyfit(maximaIdxs, ymax, 1, full=True) #y=zmax[0]*x+zmax[1]
#pmax = np.poly1d(zmax).c
def overall_line(idxs, vals):
if len(idxs) <= 1: pm, zme = [np.nan, np.nan], [np.nan]
else:
p, r = np.polynomial.polynomial.Polynomial.fit(idxs, vals, 1, full=True) #more numerically stable
pm, zme = list(reversed(p.convert().coef)), r[0]
if len(pm) == 1: pm.insert(0, 0.0)
return pm
def calc_all(idxs, h, isMin):
min_h, max_h = min(h), max(h)
scale = (max_h - min_h) / len_h
fltpct = scale * errpct
midxs = [[] for _ in range(len(divide)-1)]
for x in idxs: midxs[int((x + rem) / window)].append(x)
mtrend = []
for x in range(len(divide)-1-1):
m = midxs[x] + midxs[x+1]
mtrend.extend(trendmethod(m, h, fltpct, min_h, max_h))
if len(divide) == 2:
mtrend.extend(trendmethod(midxs[0], h, fltpct, min_h, max_h))
mtrend = merge_lines(idxs, mtrend, h, fltpct)
mtrend = [(pts, (res[0], res[1], res[2], res[3], res[4], measure_area((pts, res), isMin, h))) for pts, res in mtrend]
mtrend.sort(key=lambda val: val[1][skey])
mwindows = window_results(mtrend, isMin, h)
pm = overall_line(idxs, [h[x] for x in idxs])
#print((pmin, pmax, zmne, zmxe))
return pm, mtrend, mwindows
if method == METHOD_NCUBED:
trendmethod = get_trend
elif method == METHOD_NSQUREDLOGN:
trendmethod = get_trend_opt
elif method == METHOD_HOUGHPOINTS:
trendmethod = houghpt
#pip install scikit-image
elif method == METHOD_HOUGHLINES:
trendmethod = hough
elif method == METHOD_PROBHOUGH:
trendmethod = prob_hough
else: raise ValueError('method must be one of METHOD_NCUBED, METHOD_NSQUREDLOGN, METHOD_HOUGHPOINTS, METHOD_HOUGHLINES, METHOD_PROBHOUGH')
extremaIdxs = get_extrema(h, extmethod, accuracy)
divide = list(reversed(range(len_h, -window, -window)))
rem, divide[0] = window - len_h % window, 0
if rem == window: rem = 0
skey = 3 if sortError else 5
if hmin is None and hmax is None:
pmin, mintrend, minwindows = calc_all(extremaIdxs[0], h, True)
pmax, maxtrend, maxwindows = calc_all(extremaIdxs[1], h, False)
else:
if not hmin is None:
pmin, mintrend, minwindows = calc_all(extremaIdxs if hmax is None else extremaIdxs[0], hmin, True)
if hmax is None: return (extremaIdxs, pmin, mintrend, minwindows)
if not hmax is None:
pmax, maxtrend, maxwindows = calc_all(extremaIdxs if hmin is None else extremaIdxs[1], hmax, False)
if hmin is None: return (extremaIdxs, pmax, maxtrend, maxwindows)
return (extremaIdxs[0], pmin, mintrend, minwindows), (extremaIdxs[1], pmax, maxtrend, maxwindows)
def plot_sup_res_date(hist, idx, numbest = 2, fromwindows = True, pctbound=0.1,
extmethod = METHOD_NUMDIFF, method=METHOD_NSQUREDLOGN, window=125,
errpct = 0.005, hough_scale=0.01, hough_prob_iter=10, sortError=False, accuracy=1):
import matplotlib.ticker as ticker
return plot_support_resistance(hist, ticker.FuncFormatter(datefmt(idx)), numbest, fromwindows,
pctbound, extmethod, method, window, errpct, hough_scale, hough_prob_iter, sortError, accuracy)
def plot_support_resistance(hist, xformatter = None, numbest = 2, fromwindows = True,
pctbound=0.1, extmethod = METHOD_NUMDIFF, method=METHOD_NSQUREDLOGN,
window=125, errpct = 0.005, hough_scale=0.01, hough_prob_iter=10, sortError=False, accuracy=1):
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
ret = calc_support_resistance(hist, extmethod, method, window, errpct, hough_scale, hough_prob_iter, sortError, accuracy)
plt.clf()
plt.subplot(111)
if len(ret) == 2:
minimaIdxs, pmin, mintrend, minwindows = ret[0]
maximaIdxs, pmax, maxtrend, maxwindows = ret[1]
if type(hist) is tuple and len(hist) == 2 and check_num_alike(hist[0]) and check_num_alike(hist[1]):
len_h = len(hist[0])
min_h, max_h = min(min(hist[0]), min(hist[1])), max(max(hist[0]), max(hist[1]))
disp = [(hist[0], minimaIdxs, pmin, 'yo', 'Avg. Support', 'y--'), (hist[1], maximaIdxs, pmax, 'bo', 'Avg. Resistance', 'b--')]
dispwin = [(hist[0], minwindows, 'Support', 'g--'), (hist[1], maxwindows, 'Resistance', 'r--')]
disptrend = [(hist[0], mintrend, 'Support', 'g--'), (hist[1], maxtrend, 'Resistance', 'r--')]
plt.plot(range(len_h), hist[0], 'k--', label='Low Price')
plt.plot(range(len_h), hist[1], 'm--', label='High Price')
else:
len_h = len(hist)
min_h, max_h = min(hist), max(hist)
disp = [(hist, minimaIdxs, pmin, 'yo', 'Avg. Support', 'y--'), (hist, maximaIdxs, pmax, 'bo', 'Avg. Resistance', 'b--')]
dispwin = [(hist, minwindows, 'Support', 'g--'), (hist, maxwindows, 'Resistance', 'r--')]
disptrend = [(hist, mintrend, 'Support', 'g--'), (hist, maxtrend, 'Resistance', 'r--')]
plt.plot(range(len_h), hist, 'k--', label='Close Price')
else:
minimaIdxs, pmin, mintrend, minwindows = ([], [], [], []) if hist[0] is None else ret
maximaIdxs, pmax, maxtrend, maxwindows = ([], [], [], []) if hist[1] is None else ret
len_h = len(hist[1 if hist[0] is None else 0])
min_h, max_h = min(hist[1 if hist[0] is None else 0]), max(hist[1 if hist[0] is None else 0])
disp = [(hist[1], maximaIdxs, pmax, 'bo', 'Avg. Resistance', 'b--') if hist[0] is None else (hist[0], minimaIdxs, pmin, 'yo', 'Avg. Support', 'y--')]
dispwin = [(hist[1], maxwindows, 'Resistance', 'r--') if hist[0] is None else (hist[0], minwindows, 'Support', 'g--')]
disptrend = [(hist[1], maxtrend, 'Resistance', 'r--') if hist[0] is None else (hist[0], mintrend, 'Support', 'g--')]
plt.plot(range(len_h), hist[1 if hist[0] is None else 0], 'k--', label= ('High' if hist[0] is None else 'Low') + ' Price')
for h, idxs, pm, clrp, lbl, clrl in disp:
plt.plot(idxs, [h[x] for x in idxs], clrp)
plt.plot([0, len_h-1],[pm[1],pm[0] * (len_h-1) + pm[1]],clrl, label=lbl)
def add_trend(h, trend, lbl, clr, bFirst):
for ln in trend[:numbest]:
maxx = ln[0][-1]+1
while maxx < len_h:
ypred = ln[1][0] * maxx + ln[1][1]
if (h[maxx] > ypred and h[maxx-1] < ypred or h[maxx] < ypred and h[maxx-1] > ypred or
ypred > max_h + (max_h-min_h)*pctbound or ypred < min_h - (max_h-min_h)*pctbound): break
maxx += 1
x_vals = np.array((ln[0][0], maxx)) # plt.gca().get_xlim())
y_vals = ln[1][0] * x_vals + ln[1][1]
if bFirst:
plt.plot([ln[0][0], maxx], y_vals, clr, label=lbl)
bFirst = False
else: plt.plot([ln[0][0], maxx], y_vals, clr)
return bFirst
if fromwindows:
for h, windows, lbl, clr in dispwin:
bFirst = True
for trend in windows:
bFirst = add_trend(h, trend, lbl, clr, bFirst)
else:
for h, trend, lbl, clr in disptrend:
add_trend(h, trend, lbl, clr, True)
plt.title('Prices with Support/Resistance Trend Lines')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.gca().xaxis.set_major_locator(ticker.MaxNLocator(6))
#plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m'))
if not xformatter is None: plt.gca().xaxis.set_major_formatter(xformatter)
plt.setp(plt.gca().get_xticklabels(), rotation=30, ha='right')
#plt.gca().set_position([0, 0, 1, 1])
#plt.savefig(os.path.join(curdir, 'data', 'suppres.svg'), format='svg', bbox_inches = 'tight')
#plt.show()
return plt.gcf()