diff --git a/maximumsAndMinimums/exercises/maxMinTrueFalse9.tex b/maximumsAndMinimums/exercises/maxMinTrueFalse9.tex index a0a3d0ece..27ad07963 100644 --- a/maximumsAndMinimums/exercises/maxMinTrueFalse9.tex +++ b/maximumsAndMinimums/exercises/maxMinTrueFalse9.tex @@ -11,7 +11,7 @@ If $f$ is differentiable and decreasing on $(a,b)$, then $f'(x)<0$ on $(a,b)$ \begin{hint} -Think of $f(x)=-x^3$ on $(-1,1)$. $f$ is differentiable and decreasing, but $f'(0)=0$. +Think of $f(x)=-x^3$ on $(-1,1)$. $f$ is differentiable and decreasing, but $f'(0)=0$. So the conclusion should be $f'(x)\leq 0$ on $(a,b)$. \end{hint} \begin{multipleChoice} \choice{True}