-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhamming.ml
120 lines (88 loc) · 2.88 KB
/
hamming.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
(***********************************************************************)
(* *)
(* Objective Caml *)
(* *)
(* Damien Doligez, projet Moscova, INRIA Rocquencourt *)
(* *)
(* Copyright 2002 Institut National de Recherche en Informatique et *)
(* en Automatique. All rights reserved. This file is distributed *)
(* under the terms of the Q Public License version 1.0. *)
(* *)
(***********************************************************************)
(* $Id: hamming.ml 4303 2002-01-23 17:50:20Z doligez $ *)
(* We cannot use bignums because we don't do custom runtimes, but
int64 is a bit short, so we roll our own 37-digit numbers...
*)
let n0 = Int64.of_int 0
let n1 = Int64.of_int 1
let n2 = Int64.of_int 2
let n3 = Int64.of_int 3
let n5 = Int64.of_int 5
let ( % ) = Int64.rem
let ( * ) = Int64.mul
let ( / ) = Int64.div
let ( + ) = Int64.add
let digit = Int64.of_string "1000000000000000000"
let mul n (pl, ph) = n * pl % digit, (n * ph) + (n * pl / digit)
let cmp (nl, nh) (pl, ph) =
if nh < ph
then -1
else if nh > ph
then 1
else if nl < pl
then -1
else if nl > pl
then 1
else 0
let x2 p = mul n2 p
let x3 p = mul n3 p
let x5 p = mul n5 p
let nn1 = n1, n0
let pr (_nl, _nh) =
( (*
if compare nh n0 = 0
then Printf.printf "%Ld\n" nl
else Printf.printf "%Ld%018Ld\n" nh nl
*) )
(*
(* bignum version *)
open Num;;
let nn1 = num_of_int 1;;
let x2 = fun p -> (num_of_int 2) */ p;;
let x3 = fun p -> (num_of_int 3) */ p;;
let x5 = fun p -> (num_of_int 5) */ p;;
let cmp n p = sign_num (n -/ p);;
let pr n = Printf.printf "%s\n" (string_of_num n);;
*)
(* This is where the interesting stuff begins. *)
open Lazy
type 'a lcons = Cons of 'a * 'a lcons Lazy.t
type 'a llist = 'a lcons Lazy.t
let rec map f l =
lazy
(match force l with
| Cons (x, ll) -> Cons (f x, map f ll))
let rec merge cmp l1 l2 =
lazy
(match force l1, force l2 with
| Cons (x1, ll1), Cons (x2, ll2) ->
let c = cmp x1 x2 in
if c = 0
then Cons (x1, merge cmp ll1 ll2)
else if c < 0
then Cons (x1, merge cmp ll1 l2)
else Cons (x2, merge cmp l1 ll2))
let rec iter_interval f l (start, stop) =
if stop = 0
then ()
else
match force l with
| Cons (x, ll) ->
if start <= 0 then f x;
iter_interval f ll (start - 1, stop - 1)
let rec hamming = lazy (Cons (nn1, merge cmp ham2 (merge cmp ham3 ham5)))
and ham2 = lazy (force (map x2 hamming))
and ham3 = lazy (force (map x3 hamming))
and ham5 = lazy (force (map x5 hamming))
;;
iter_interval pr hamming (88000, 88100)