-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclustering_methods.py
36 lines (34 loc) · 1.69 KB
/
clustering_methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import sys
from pyclustering.cluster.center_initializer import kmeans_plusplus_initializer
from sklearn.cluster import AgglomerativeClustering, DBSCAN, OPTICS
from tslearn.clustering import TimeSeriesKMeans
from pyclustering.cluster.kmedoids import kmedoids
from pyclustering.cluster.encoder import type_encoding, cluster_encoder
def clustering_methods(alg_num, dm, arr):
if alg_num == "1":
k = input("enter k:\n")
clustering = TimeSeriesKMeans(n_clusters=int(k), metric="dtw",max_iter=5).fit(arr)
return clustering.labels_
elif alg_num == "2":
k = input("enter # of clusters:\n")
clustering = AgglomerativeClustering(n_clusters=int(k), linkage="complete", affinity="precomputed").fit(dm)
return clustering.labels_
elif alg_num == "3":
eps = input("enter eps:\n")
clustering = DBSCAN(eps=float(eps), min_samples=4, metric="precomputed").fit(dm)
return clustering.labels_
elif alg_num == "4":
clustering = OPTICS(min_samples=2, cluster_method='dbscan', metric="precomputed").fit(dm)
return clustering.labels_
elif alg_num == "5":
k = input("enter k:\n")
initial_medoids = kmeans_plusplus_initializer(dm, int(k)).initialize(return_index=True)
kmedoids_instance = kmedoids(dm, initial_medoids, data_type='distance_matrix')
kmedoids_instance.process()
clusters = kmedoids_instance.get_clusters()
kmedoids_repr = kmedoids_instance.get_cluster_encoding()
kmedoids_encoder = cluster_encoder(kmedoids_repr, clusters, dm)
kmedoids_encoder.set_encoding(type_encoding.CLUSTER_INDEX_LABELING)
return kmedoids_encoder.get_clusters()
else:
sys.exit()