This repository has been archived by the owner on Mar 20, 2020. It is now read-only.
forked from dBeker/Faster-RCNN-TensorFlow-Python3
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdemo.py
executable file
·176 lines (136 loc) · 5.6 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python
# --------------------------------------------------------
# Tensorflow Faster R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Xinlei Chen, based on code from Ross Girshick
# --------------------------------------------------------
"""
Demo script showing detections in sample images.
See README.md for installation instructions before running.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from lib.config import config as cfg
from lib.utils.nms_wrapper import nms
from lib.utils.test import im_detect
#from nets.resnet_v1 import resnetv1
from lib.nets.vgg16 import vgg16
from lib.utils.timer import Timer
DEMO_IMAGES_DIR = "demo_images"
CLASSES_DICT = {'synthesizer':'n04376400', 'pipe organ':'n03854065', 'music box': 'n03801353', \
'electric guitar':'n03272010', 'sax':'n04141076', 'ocarina':'n03840681', 'harmonica':'n03494278',\
'acoustic guitar':'n02676566', 'trombone':'n04487394','gong':'n03447721',\
'maraca':'n03720891', 'xylophone':'n03721384', 'pianoforte':'n03928116'}
CLASSES = ('__background__','n04376400','n03854065','n03801353','n03272010',
'n04141076','n03840681','n03494278','n02676566','n04487394',
'n03447721','n03720891','n03721384','n03928116')
def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
""" Saves an image with name fig_id"""
path = os.path.join(DEMO_IMAGES_DIR,"{}.png".format(fig_id))
print("Saving figure", fig_id)
if tight_layout:
plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution)
def my_vis_detections(im, d, thresh=0.5, image_name = "Null"):
"""Draw detected bounding boxes."""
all_classes = ""
im = im[:, :, (2, 1, 0)]
fig, ax = plt.subplots(figsize=(12, 12))
ax.imshow(im, aspect='equal')
for key in d.keys():
inds = np.where((d[key])[:, -1] >= thresh)[0]
if len(inds) == 0:
continue
class_name = ""
for class_ in CLASSES_DICT.keys():
if CLASSES_DICT[class_] == key:
class_name = class_
break
all_classes += class_name+"_"
for i in inds:
bbox = d[key][i, :4]
score = d[key][i, -1]
ax.add_patch(
plt.Rectangle((bbox[0], bbox[1]),
bbox[2] - bbox[0],
bbox[3] - bbox[1], fill=False,
edgecolor='red', linewidth=3.5)
)
ax.text(bbox[0], bbox[1] - 2,
'{:s} {:.3f}'.format(class_name, score),
bbox=dict(facecolor='blue', alpha=0.5),
fontsize=14, color='white')
ax.set_title(('{} detections with '
'p({} | box) >= {:.1f}').format(all_classes, all_classes,
thresh),
fontsize=14)
plt.axis('off')
plt.tight_layout()
plt.draw()
save_fig("{}_{}".format(image_name,all_classes))
def demo(sess, net, image_name):
"""Detect object classes in an image using pre-computed object proposals."""
# Load the demo image
im_file = os.path.join(cfg.FLAGS2["data_dir"], 'demo', image_name)
im = cv2.imread(im_file)
# Detect all object classes and regress object bounds
timer = Timer()
timer.tic()
scores, boxes = im_detect(sess, net, im)
timer.toc()
print('Detection took {:.3f}s for {:d} object proposals'.format(timer.total_time, boxes.shape[0]))
#print(scores)
# Visualize detections for each class
CONF_THRESH = 0.5
NMS_THRESH = 0.2
# d is a dictionary that contains as keys the name of the classes, as value dets
d = {}
#print(scores)
for cls_ind, cls in enumerate(CLASSES[1:]):
cls_ind += 1 # because we skipped background
cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)]
cls_scores = scores[:, cls_ind]
dets = np.hstack((cls_boxes,
cls_scores[:, np.newaxis])).astype(np.float32)
keep = nms(dets, NMS_THRESH)
dets = dets[keep, :]
d[cls] = dets
my_vis_detections(im, d, thresh=CONF_THRESH, image_name = image_name.split(".jpg")[0])
if __name__ == '__main__':
#args = parse_args()
# model path
demonet = 'vgg16'
tfmodel = os.path.join('default','model.ckpt')
if not os.path.isfile(tfmodel + '.meta'):
raise IOError(('{:s} not found.\nDid you download the proper networks from '
'our server and place them properly?').format(tfmodel + '.meta'))
# set config
tfconfig = tf.ConfigProto(allow_soft_placement=True)
tfconfig.gpu_options.allow_growth = True
# init session
sess = tf.Session(config=tfconfig)
# load network
if demonet == 'vgg16':
net = vgg16(batch_size=1)
else:
raise NotImplementedError
net.create_architecture(sess, "TEST", 14,
tag='default', anchor_scales=[8, 16, 32])
# restoring from snapshot
saver = tf.train.Saver()
saver.restore(sess, tfmodel)
print('Loaded network {:s}'.format(tfmodel))
# test images
im_names = ['1.jpg', '2.jpg', '3.jpg', '4.jpg', "5.jpg"]
for im_name in im_names:
print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~')
print('Demo for data/demo/{}'.format(im_name))
demo(sess, net, im_name)
plt.show()