diff --git a/caffe/TinyYolo/run.py b/caffe/TinyYolo/run.py index 90a95fd9..c77b86b9 100755 --- a/caffe/TinyYolo/run.py +++ b/caffe/TinyYolo/run.py @@ -11,6 +11,7 @@ # Assume running in examples/caffe/TinyYolo and graph file is in current directory. input_image_file= '../../data/images/nps_chair.png' +#input_image_file= './dog.jpg' tiny_yolo_graph_file= './yolo_tiny.graph' # Tiny Yolo assumes input images are these dimensions. @@ -43,7 +44,7 @@ def filter_objects(inference_result, input_image_width, input_image_height): "person", "pottedplant", "sheep", "sofa", "train","tvmonitor"] # only keep boxes with probabilities greater than this - probability_threshold = 0.05 + probability_threshold = 0.07 num_classifications = len(network_classifications) # should be 20 grid_size = 7 # the image is a 7x7 grid. Each box in the grid is 64x64 pixels @@ -110,7 +111,7 @@ def get_duplicate_box_mask(box_list): # The intersection-over-union threshold to use when determining duplicates. # objects/boxes found that are over this threshold will be # considered the same object - max_iou = 0.30 + max_iou = 0.35 box_mask = np.ones(len(box_list)) @@ -232,8 +233,9 @@ def display_objects_in_gui(source_image, filtered_objects): cv2.rectangle(display_image,(box_left, box_top-20),(box_right,box_top), label_background_color, -1) cv2.putText(display_image,filtered_objects[obj_index][0] + ' : %.2f' % filtered_objects[obj_index][5], (box_left+5,box_top-7), cv2.FONT_HERSHEY_SIMPLEX, 0.5, label_text_color, 1) - cv2.imshow('TinyYolo (hit key to exit)',display_image) - cv2.waitKey(0) + cv2.imshow('TinyYolo (hit key to exit)',display_image) + cv2.waitKey(0) + # This function is called from the entry point to do # all the work.