-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvae_original.py
63 lines (53 loc) · 1.94 KB
/
vae_original.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import torch
import torch.nn as nn
class VAE(nn.Module):
def __init__(self, device):#, batch_size=250):
super(VAE, self).__init__()
self.device = device
self.encoder = nn.Sequential(
nn.Conv2d(3, 32, 4, stride=2),
nn.ReLU(),
nn.Conv2d(32, 64, 4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 128, 4, stride=2),
nn.ReLU(),
nn.Conv2d(128, 256, 4, stride=2),
nn.ReLU()
)
self.mufc = nn.Linear(1024, 32)
self.logvarfc = nn.Linear(1024, 32)
self.decoder_fc = nn.Linear(32, 1024)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(1024, 128, 5, stride=2),
nn.ReLU(),
nn.ConvTranspose2d(128, 64, 5, stride=2),
nn.ReLU(),
nn.ConvTranspose2d(64, 32, 6, stride=2),
nn.ReLU(),
nn.ConvTranspose2d(32, 3, 6, stride=2),
nn.Sigmoid(),
)
#self.batch_size = batch_size
def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
noise = torch.randn_like(std).to(self.device)
return mu + std * noise # z
def forward(self, x):
x = self.encoder(x)
x = x.reshape(-1, 1024)
mu, logvar = self.mufc(x), self.logvarfc(x)
z = self.reparameterize(mu, logvar)
z_ = self.decoder_fc(z)
z_ = z_.reshape(-1, 1024, 1, 1)
return self.decoder(z_.float()), mu, logvar
def get_z(self, x):
with torch.no_grad():
encoded = self.encoder(x).reshape(-1, 1024)
mu, logvar = self.mufc(encoded), self.logvarfc(encoded)
return self.reparameterize(mu, logvar)
def loss_func(self, x, x_prime, mu, logvar):
recon_loss = nn.BCELoss(reduction='sum')
loss = recon_loss(x_prime, x)
loss += -0.5 * torch.sum(1 + logvar - mu.pow(2) - torch.exp(logvar))
return loss