From 07c48240eb0c77d01b23b671abc9d9042a38feb7 Mon Sep 17 00:00:00 2001 From: ghilesZ Date: Wed, 28 Feb 2024 21:21:01 +0100 Subject: [PATCH] add examples --- Makefile | 2 +- examples/dune | 2 +- examples/polygons.ml | 75 ++++++++++++++++++++++++++++++++++++++++++ examples/sortedlist.ml | 61 ++++++++++++++++++++++++++++++++++ examples/tree.ml | 14 ++++---- 5 files changed, 145 insertions(+), 9 deletions(-) create mode 100644 examples/polygons.ml create mode 100644 examples/sortedlist.ml diff --git a/Makefile b/Makefile index e1ceb2a9..737f1e0f 100644 --- a/Makefile +++ b/Makefile @@ -36,7 +36,7 @@ doc: cp -r _build/default/_doc/_html/* docs/ build: - dune build absolute-solver/absolute.exe + dune build . test: dune runtest -f diff --git a/examples/dune b/examples/dune index 2266a527..0e2799b3 100644 --- a/examples/dune +++ b/examples/dune @@ -1,3 +1,3 @@ (executables - (names polynomial convex tree) + (names polynomial polygons sortedlist convex tree) (libraries libabsolute)) diff --git a/examples/polygons.ml b/examples/polygons.ml new file mode 100644 index 00000000..b9714c4c --- /dev/null +++ b/examples/polygons.ml @@ -0,0 +1,75 @@ +(** this example defines the csp for convex polygons of size n and output a + graphviz file. + + It is possible to view it by doing: + + n=15; dune exec ./polygons.exe $n; neato -Goverlap=false -Tpng convex$n.viz + > convex$n.png; open convex$n.png + + NB: neato produces a friendlier output than dot *) + +open Libabsolute + +(* vector from (x1,y1) yo (x2,y2) *) +let vector (x1, y1) (x2, y2) = + let open Expr.Operators in + (x2 - x1, y2 - y1) + +(* cross product of two vectors *) +let cross_product (x1, y1) (x2, y2) = + let open Expr.Operators in + (x1 * y2) - (y1 * x2) + +(* Function that builds the list of constraints corresponding to the check that + a list of points forms a convex polygon. This is done by verifying that the + vectors corresponding to two consecutive edges of the polygons have a + negative cross-product (We could have also picked positive, but we enforce + less representations for the same polyhedron that way). *) +let is_convex points = + let rec check_convexity = function + | p1 :: p2 :: p3 :: rest -> + let v1 = vector p1 p2 in + let v2 = vector p2 p3 in + let open Constraint.Operators in + (cross_product v1 v2 < Expr.zero) :: check_convexity (p2 :: p3 :: rest) + | _ -> [] + in + match points with + | [] | [_] | [_; _] -> + failwith "Invalid input: At least 3 points are required." + | h1 :: h2 :: _ -> check_convexity (points @ [h1; h2]) + +(* build two variables xn, yn per points of the polygon *) +let build_vars n = + let rec loop acc = function + | 0 -> List.rev acc + | n -> + let idx = string_of_int n in + loop (("x" ^ idx, "y" ^ idx) :: acc) (n - 1) + in + loop [] n + +let build_csp n = + let names = build_vars n in + let csp = + List.fold_left + (fun csp (v1, v2) -> + csp |> Csp.add_real_var_f v1 0. 100. |> Csp.add_real_var_f v2 0. 100. ) + Csp.empty names + in + let var_exprs = List.map (fun (v1, v2) -> (Expr.var v1, Expr.var v2)) names in + let constrs = is_convex var_exprs in + List.fold_left Csp.add_constr csp constrs + +let () = + if Array.length Sys.argv < 2 then ( + Format.printf "bad usage: expect a number of points\n" ; + exit 1 ) ; + match int_of_string_opt Sys.argv.(1) with + | Some nb_points -> + let csp = build_csp nb_points in + Format.printf "%a\n" Csp.print csp ; + Csp.to_graphviz csp (Format.sprintf "convex%i.viz" nb_points) + | None -> + Format.printf "expecting numeric argument %s\n" Sys.argv.(1) ; + exit 1 diff --git a/examples/sortedlist.ml b/examples/sortedlist.ml new file mode 100644 index 00000000..b86c554f --- /dev/null +++ b/examples/sortedlist.ml @@ -0,0 +1,61 @@ +(** this example defines the csp for sorted list of size n and output a graphviz + file. + + It is possible to view it by doing: + + n=15; dune exec ./sortedlist.exe $n; neato -Goverlap=false -Tpng + sortedlist$n.viz > sortedlist$n.png; open sortedlist$n.png + + NB: neato produces a friendlier output than dot *) + +open Libabsolute + +(* Function that builds the list of constraints corresponding to the check that + a list of points forms a convex polygon. This is done by verifying that the + vectors corresponding to two consecutive edges of the polygons have a + negative cross-product (We could have also picked positive, but we enforce + less representations for the same polyhedron that way). *) +let sorted l = + let rec loop = function + | x1 :: x2 :: rest -> + let open Constraint.Operators in + (x1 <= x2) :: loop (x2 :: rest) + | _ -> [] + in + match l with + | [] | [_] -> failwith "Invalid input: At least 2 numbers are required." + | _ -> loop l + +(* build two variables xn, yn per points of the polygon *) +let build_vars n = + let rec loop acc = function + | 0 -> List.rev acc + | n -> + let idx = string_of_int n in + loop (("x" ^ idx) :: acc) (n - 1) + in + loop [] n + +let build_csp n = + let names = build_vars n in + let csp = + List.fold_left + (fun csp v -> csp |> Csp.add_real_var_f v 0. 1000.) + Csp.empty names + in + let var_exprs = List.map Expr.var names in + let constrs = sorted var_exprs in + List.fold_left Csp.add_constr csp constrs + +let () = + if Array.length Sys.argv < 2 then ( + Format.printf "bad usage: expect a number of points\n" ; + exit 1 ) ; + match int_of_string_opt Sys.argv.(1) with + | Some nb_points -> + let csp = build_csp nb_points in + Format.printf "%a\n" Csp.print csp ; + Csp.to_graphviz csp (Format.sprintf "sortedlist%i.viz" nb_points) + | None -> + Format.printf "expecting numeric argument %s\n" Sys.argv.(1) ; + exit 1 diff --git a/examples/tree.ml b/examples/tree.ml index 12639407..83b0b626 100644 --- a/examples/tree.ml +++ b/examples/tree.ml @@ -15,12 +15,11 @@ let pp_constr fmt = List.iter (print_intern fmt) let () = let open Csp in let prob = - empty - |> add_real_var_f "x" (-1000.) 1000. - |> add_real_var_f "t" 0. 1000. - |> add_constr - (Parser.constr - {|(x in [0;10] && t in [0;1]) || (x in [5;15] && t in [1;2])|}) + let csp = add_real_var_f "x" (-1000.) 1000. empty in + let csp = add_real_var_f "t" 0. 1000. csp in + add_constr csp + (Parser.constr + {|(x in [0;10] && t in [0;1]) || (x in [5;15] && t in [1;2])|} ) in let s, c = init prob in Format.printf "%a, %a\n" D.print s pp_constr c ; @@ -33,7 +32,8 @@ let () = | Unsat -> Format.printf "%a unsatisfiable\n" print_intern h | Filtered ((s', c'), _) -> Format.printf "new abstract value:\n %a\n" D.print s' ; - Format.printf "new constraint:\n%a\n" print_intern c' ) ; + Format.printf "new constraint:\n%a\n" print_intern c' + | Pruned _ -> Format.printf "pruned\n" ) ; aux t in aux c