-
Notifications
You must be signed in to change notification settings - Fork 226
/
Copy pathEffectsLayer.hpp
817 lines (694 loc) · 23.2 KB
/
EffectsLayer.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
/*
* Aurora: https://github.com/pixelmatix/aurora
* Copyright (c) 2014 Jason Coon
*
* Portions of this code are adapted from "Funky Clouds" by Stefan Petrick: https://gist.github.com/anonymous/876f908333cd95315c35
* Portions of this code are adapted from "NoiseSmearing" by Stefan Petrick: https://gist.github.com/StefanPetrick/9ee2f677dbff64e3ba7a
* Copyright (c) 2014 Stefan Petrick
* http://www.stefan-petrick.de/wordpress_beta
*
* Modified by Codetastic 2024
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef Effects_H
#define Effects_H
/**
* The one for 256+ matrices
* otherwise this:
* for (uint8_t i = 0; i < VPANEL_W; i++) {}
* turns into an infinite loop
*/
uint16_t XY16( uint16_t x, uint16_t y)
{
if( x >= VPANEL_W) return 0;
if( y >= VPANEL_H) return 0;
return (y * VPANEL_W) + x;
}
/* Convert x,y co-ordinate to flat array index.
* x and y positions start from 0, so must not be >= 'real' panel width or height
* (i.e. 64 pixels or 32 pixels.). Max value: VPANEL_W-1 etc.
* Ugh... uint8_t - really??? this weak method can't cope with 256+ pixel matrices :(
*/
uint16_t XY( uint16_t x, uint16_t y)
{
return XY16(x, y);
}
class EffectsLayer : public GFX {
public:
uint32_t noise_x;
uint32_t noise_y;
uint32_t noise_z;
uint32_t noise_scale_x;
uint32_t noise_scale_y;
uint8_t **noise = nullptr; // we will allocate mem later
uint8_t noisesmoothing;
CRGB *leds;
int width;
int height;
int num_leds = 0;
EffectsLayer(int w, int h) : GFX(w, h), width(w), height(h) {
// we do dynamic allocation for leds buffer, otherwise esp32 toolchain can't link static arrays of such a big size for 256+ matrices
leds = (CRGB *)malloc((width * height + 1) * sizeof(CRGB));
num_leds = width * height;
// allocate mem for noise effect
// (there should be some guards for malloc errors eventually)
noise = (uint8_t **)malloc(width * sizeof(uint8_t *));
for (int i = 0; i < width; ++i) {
noise[i] = (uint8_t *)malloc(height * sizeof(uint8_t));
}
// Set starting palette
currentPalette = RainbowColors_p;
loadPalette(0);
NoiseVariablesSetup();
ClearFrame();
}
~EffectsLayer(){
free(leds);
for (int i = 0; i < width; ++i) {
free(noise[i]);
}
free(noise);
}
/* The only 'framebuffer' we have is what is contained in the leds and leds2 variables.
* We don't store what the color a particular pixel might be, other than when it's turned
* into raw electrical signal output gobbly-gook (i.e. the DMA matrix buffer), but this * is not reversible.
*
* As such, any time these effects want to write a pixel color, we first have to update
* the leds or leds2 array, and THEN write it to the RGB panel. This enables us to 'look up' the array to see what a pixel color was previously, each drawFrame().
*/
void setPixel(int16_t x, int16_t y, CRGB color)
{
leds[XY16(x, y)] = color;
}
// write one pixel with the specified color from the current palette to coordinates
void setPixelFromPaletteIndex(int x, int y, uint8_t colorIndex) {
leds[XY16(x, y)] = ColorFromCurrentPalette(colorIndex);
}
void PrepareFrame() { }
void ShowFrame() { // send to display
currentPalette = targetPalette;
for (int y=0; y<height; ++y){
for (int x=0; x<width; ++x){
uint16_t _pixel = XY16(x,y);
virtualDisp->drawPixelRGB888( x, y, leds[_pixel].r, leds[_pixel].g, leds[_pixel].b);
} // end loop to copy fast led to the dma matrix
}
}
uint16_t getCenterX() {
return width / 2;
}
uint16_t getCenterY() {
return height / 2;
}
// scale the brightness of the screenbuffer down
void DimAll(byte value) {
for (int i = 0; i < num_leds; i++)
leds[i].nscale8(value);
}
void ClearFrame() {
for (int i = 0; i < num_leds; i++)
leds[i]= CRGB(0,0,0);
}
uint8_t beatcos8(accum88 beats_per_minute, uint8_t lowest = 0, uint8_t highest = 255, uint32_t timebase = 0, uint8_t phase_offset = 0)
{
uint8_t beat = beat8(beats_per_minute, timebase);
uint8_t beatcos = cos8(beat + phase_offset);
uint8_t rangewidth = highest - lowest;
uint8_t scaledbeat = scale8(beatcos, rangewidth);
uint8_t result = lowest + scaledbeat;
return result;
}
uint8_t mapsin8(uint8_t theta, uint8_t lowest = 0, uint8_t highest = 255) {
uint8_t beatsin = sin8(theta);
uint8_t rangewidth = highest - lowest;
uint8_t scaledbeat = scale8(beatsin, rangewidth);
uint8_t result = lowest + scaledbeat;
return result;
}
uint8_t mapcos8(uint8_t theta, uint8_t lowest = 0, uint8_t highest = 255) {
uint8_t beatcos = cos8(theta);
uint8_t rangewidth = highest - lowest;
uint8_t scaledbeat = scale8(beatcos, rangewidth);
uint8_t result = lowest + scaledbeat;
return result;
}
// palettes
static const int paletteCount = 10;
int paletteIndex = -1;
TBlendType currentBlendType = LINEARBLEND;
CRGBPalette16 currentPalette;
CRGBPalette16 targetPalette;
char* currentPaletteName;
static const int HeatColorsPaletteIndex = 6;
static const int RandomPaletteIndex = 9;
void CyclePalette(int offset = 1) {
loadPalette(paletteIndex + offset);
}
void RandomPalette() {
loadPalette(RandomPaletteIndex);
}
void loadPalette(int index) {
paletteIndex = index;
if (paletteIndex >= paletteCount)
paletteIndex = 0;
else if (paletteIndex < 0)
paletteIndex = paletteCount - 1;
switch (paletteIndex) {
case 0:
targetPalette = RainbowColors_p;
currentPaletteName = (char *)"Rainbow";
break;
//case 1:
// targetPalette = RainbowStripeColors_p;
// currentPaletteName = (char *)"RainbowStripe";
// break;
case 1:
targetPalette = OceanColors_p;
currentPaletteName = (char *)"Ocean";
break;
case 2:
targetPalette = CloudColors_p;
currentPaletteName = (char *)"Cloud";
break;
case 3:
targetPalette = ForestColors_p;
currentPaletteName = (char *)"Forest";
break;
case 4:
targetPalette = PartyColors_p;
currentPaletteName = (char *)"Party";
break;
case 5:
setupGrayscalePalette();
currentPaletteName = (char *)"Grey";
break;
case HeatColorsPaletteIndex:
targetPalette = HeatColors_p;
currentPaletteName = (char *)"Heat";
break;
case 7:
targetPalette = LavaColors_p;
currentPaletteName = (char *)"Lava";
break;
case 8:
setupIcePalette();
currentPaletteName = (char *)"Ice";
break;
case RandomPaletteIndex:
loadPalette(random(0, paletteCount - 1));
paletteIndex = RandomPaletteIndex;
currentPaletteName = (char *)"Random";
break;
}
}
void setPalette(String paletteName) {
if (paletteName == "Rainbow")
loadPalette(0);
//else if (paletteName == "RainbowStripe")
// loadPalette(1);
else if (paletteName == "Ocean")
loadPalette(1);
else if (paletteName == "Cloud")
loadPalette(2);
else if (paletteName == "Forest")
loadPalette(3);
else if (paletteName == "Party")
loadPalette(4);
else if (paletteName == "Grayscale")
loadPalette(5);
else if (paletteName == "Heat")
loadPalette(6);
else if (paletteName == "Lava")
loadPalette(7);
else if (paletteName == "Ice")
loadPalette(8);
else if (paletteName == "Random")
RandomPalette();
}
void listPalettes() {
Serial.println(F("{"));
Serial.print(F(" \"count\": "));
Serial.print(paletteCount);
Serial.println(",");
Serial.println(F(" \"results\": ["));
String paletteNames [] = {
"Rainbow",
// "RainbowStripe",
"Ocean",
"Cloud",
"Forest",
"Party",
"Grayscale",
"Heat",
"Lava",
"Ice",
"Random"
};
for (int i = 0; i < paletteCount; i++) {
Serial.print(F(" \""));
Serial.print(paletteNames[i]);
if (i == paletteCount - 1)
Serial.println(F("\""));
else
Serial.println(F("\","));
}
Serial.println(" ]");
Serial.println("}");
}
void setupGrayscalePalette() {
targetPalette = CRGBPalette16(CRGB::Black, CRGB::White);
}
void setupIcePalette() {
targetPalette = CRGBPalette16(CRGB::Black, CRGB::Blue, CRGB::Aqua, CRGB::White);
}
// Oscillators and Emitters
// the oscillators: linear ramps 0-255
byte osci[6];
// sin8(osci) swinging between 0 to VPANEL_W - 1
byte p[6];
// set the speeds (and by that ratios) of the oscillators here
void MoveOscillators() {
osci[0] = osci[0] + 5;
osci[1] = osci[1] + 2;
osci[2] = osci[2] + 3;
osci[3] = osci[3] + 4;
osci[4] = osci[4] + 1;
if (osci[4] % 2 == 0)
osci[5] = osci[5] + 1; // .5
for (int i = 0; i < 4; i++) {
p[i] = map8(sin8(osci[i]), 0, width - 1); //why? to keep the result in the range of 0-VPANEL_W (matrix size)
}
}
// All the caleidoscope functions work directly within the screenbuffer (leds array).
// Draw whatever you like in the area x(0-15) and y (0-15) and then copy it arround.
// rotates the first 16x16 quadrant 3 times onto a 32x32 (+90 degrees rotation for each one)
void Caleidoscope1() {
for (int x = 0; x < width / 2; x++) {
for (int y = 0; y < height / 2; y++) {
leds[XY16(width - 1 - x, y)] = leds[XY16(x, y)];
leds[XY16(width - 1 - x, height - 1 - y)] = leds[XY16(x, y)];
leds[XY16(x, height - 1 - y)] = leds[XY16(x, y)];
}
}
}
// mirror the first 16x16 quadrant 3 times onto a 32x32
void Caleidoscope2() {
for (int x = 0; x < width / 2; x++) {
for (int y = 0; y < height / 2; y++) {
leds[XY16(width - 1 - x, y)] = leds[XY16(y, x)];
leds[XY16(x, height - 1 - y)] = leds[XY16(y, x)];
leds[XY16(width - 1 - x, height - 1 - y)] = leds[XY16(x, y)];
}
}
}
// copy one diagonal triangle into the other one within a 16x16
void Caleidoscope3() {
for (int x = 0; x <= width / 2 - 1 && x < height; x++) {
for (int y = 0; y <= x && y<height; y++) {
leds[XY16(x, y)] = leds[XY16(y, x)];
}
}
}
// copy one diagonal triangle into the other one within a 16x16 (90 degrees rotated compared to Caleidoscope3)
void Caleidoscope4() {
for (int x = 0; x <= width / 2 - 1; x++) {
for (int y = 0; y <= height / 2 - 1 - x; y++) {
leds[XY16(height / 2 - 1 - y, width / 2 - 1 - x)] = leds[XY16(x, y)];
}
}
}
// copy one diagonal triangle into the other one within a 8x8
void Caleidoscope5() {
for (int x = 0; x < width / 4; x++) {
for (int y = 0; y <= x && y<=height; y++) {
leds[XY16(x, y)] = leds[XY16(y, x)];
}
}
for (int x = width / 4; x < width / 2; x++) {
for (int y = height / 4; y >= 0; y--) {
leds[XY16(x, y)] = leds[XY16(y, x)];
}
}
}
void Caleidoscope6() {
for (int x = 1; x < width / 2; x++) {
leds[XY16(7 - x, 7)] = leds[XY16(x, 0)];
} //a
for (int x = 2; x < width / 2; x++) {
leds[XY16(7 - x, 6)] = leds[XY16(x, 1)];
} //b
for (int x = 3; x < width / 2; x++) {
leds[XY16(7 - x, 5)] = leds[XY16(x, 2)];
} //c
for (int x = 4; x < width / 2; x++) {
leds[XY16(7 - x, 4)] = leds[XY16(x, 3)];
} //d
for (int x = 5; x < width / 2; x++) {
leds[XY16(7 - x, 3)] = leds[XY16(x, 4)];
} //e
for (int x = 6; x < width / 2; x++) {
leds[XY16(7 - x, 2)] = leds[XY16(x, 5)];
} //f
for (int x = 7; x < width / 2; x++) {
leds[XY16(7 - x, 1)] = leds[XY16(x, 6)];
} //g
}
// create a square twister to the left or counter-clockwise
// x and y for center, r for radius
void SpiralStream(int x, int y, int r, byte dimm) {
for (int d = r; d >= 0; d--) { // from the outside to the inside
for (int i = x - d; i <= x + d; i++) {
leds[XY16(i, y - d)] += leds[XY16(i + 1, y - d)]; // lowest row to the right
leds[XY16(i, y - d)].nscale8(dimm);
}
for (int i = y - d; i <= y + d; i++) {
leds[XY16(x + d, i)] += leds[XY16(x + d, i + 1)]; // right column up
leds[XY16(x + d, i)].nscale8(dimm);
}
for (int i = x + d; i >= x - d; i--) {
leds[XY16(i, y + d)] += leds[XY16(i - 1, y + d)]; // upper row to the left
leds[XY16(i, y + d)].nscale8(dimm);
}
for (int i = y + d; i >= y - d; i--) {
leds[XY16(x - d, i)] += leds[XY16(x - d, i - 1)]; // left column down
leds[XY16(x - d, i)].nscale8(dimm);
}
}
}
// expand everything within a circle
void Expand(int centerX, int centerY, int radius, byte dimm) {
if (radius == 0)
return;
int currentRadius = radius;
while (currentRadius > 0) {
int a = radius, b = 0;
int radiusError = 1 - a;
int nextRadius = currentRadius - 1;
int nextA = nextRadius - 1, nextB = 0;
int nextRadiusError = 1 - nextA;
while (a >= b)
{
// move them out one pixel on the radius
leds[XY16(a + centerX, b + centerY)] = leds[XY16(nextA + centerX, nextB + centerY)];
leds[XY16(b + centerX, a + centerY)] = leds[XY16(nextB + centerX, nextA + centerY)];
leds[XY16(-a + centerX, b + centerY)] = leds[XY16(-nextA + centerX, nextB + centerY)];
leds[XY16(-b + centerX, a + centerY)] = leds[XY16(-nextB + centerX, nextA + centerY)];
leds[XY16(-a + centerX, -b + centerY)] = leds[XY16(-nextA + centerX, -nextB + centerY)];
leds[XY16(-b + centerX, -a + centerY)] = leds[XY16(-nextB + centerX, -nextA + centerY)];
leds[XY16(a + centerX, -b + centerY)] = leds[XY16(nextA + centerX, -nextB + centerY)];
leds[XY16(b + centerX, -a + centerY)] = leds[XY16(nextB + centerX, -nextA + centerY)];
// dim them
leds[XY16(a + centerX, b + centerY)].nscale8(dimm);
leds[XY16(b + centerX, a + centerY)].nscale8(dimm);
leds[XY16(-a + centerX, b + centerY)].nscale8(dimm);
leds[XY16(-b + centerX, a + centerY)].nscale8(dimm);
leds[XY16(-a + centerX, -b + centerY)].nscale8(dimm);
leds[XY16(-b + centerX, -a + centerY)].nscale8(dimm);
leds[XY16(a + centerX, -b + centerY)].nscale8(dimm);
leds[XY16(b + centerX, -a + centerY)].nscale8(dimm);
b++;
if (radiusError < 0)
radiusError += 2 * b + 1;
else
{
a--;
radiusError += 2 * (b - a + 1);
}
nextB++;
if (nextRadiusError < 0)
nextRadiusError += 2 * nextB + 1;
else
{
nextA--;
nextRadiusError += 2 * (nextB - nextA + 1);
}
}
currentRadius--;
}
}
// give it a linear tail to the right
void StreamRight(byte scale, int fromX = 0, int toX = 0, int fromY = 0, int toY = 0)
{
for (int x = fromX + 1; x < toX; x++) {
for (int y = fromY; y < toY; y++) {
leds[XY16(x, y)] += leds[XY16(x - 1, y)];
leds[XY16(x, y)].nscale8(scale);
}
}
for (int y = fromY; y < toY; y++)
leds[XY16(0, y)].nscale8(scale);
}
// give it a linear tail to the left
void StreamLeft(byte scale, int fromX = 0, int toX = 0, int fromY = 0, int toY = 0)
{
for (int x = toX; x < fromX; x++) {
for (int y = fromY; y < toY; y++) {
leds[XY16(x, y)] += leds[XY16(x + 1, y)];
leds[XY16(x, y)].nscale8(scale);
}
}
for (int y = fromY; y < toY; y++)
leds[XY16(0, y)].nscale8(scale);
}
// give it a linear tail downwards
void StreamDown(byte scale)
{
for (int x = 0; x < width; x++) {
for (int y = 1; y < height; y++) {
leds[XY16(x, y)] += leds[XY16(x, y - 1)];
leds[XY16(x, y)].nscale8(scale);
}
}
for (int x = 0; x < width; x++)
leds[XY16(x, 0)].nscale8(scale);
}
// give it a linear tail upwards
void StreamUp(byte scale)
{
for (int x = 0; x < width; x++) {
for (int y = height - 2; y >= 0; y--) {
leds[XY16(x, y)] += leds[XY16(x, y + 1)];
leds[XY16(x, y)].nscale8(scale);
}
}
for (int x = 0; x < width; x++)
leds[XY16(x, height - 1)].nscale8(scale);
}
// give it a linear tail up and to the left
void StreamUpAndLeft(byte scale)
{
for (int x = 0; x < width - 1; x++) {
for (int y = height - 2; y >= 0; y--) {
leds[XY16(x, y)] += leds[XY16(x + 1, y + 1)];
leds[XY16(x, y)].nscale8(scale);
}
}
for (int x = 0; x < width; x++)
leds[XY16(x, height - 1)].nscale8(scale);
for (int y = 0; y < height; y++)
leds[XY16(width - 1, y)].nscale8(scale);
}
// give it a linear tail up and to the right
void StreamUpAndRight(byte scale)
{
for (int x = 0; x < width - 1; x++) {
for (int y = height - 2; y >= 0; y--) {
leds[XY16(x + 1, y)] += leds[XY16(x, y + 1)];
leds[XY16(x, y)].nscale8(scale);
}
}
// fade the bottom row
for (int x = 0; x < width; x++)
leds[XY16(x, height - 1)].nscale8(scale);
// fade the right column
for (int y = 0; y < height; y++)
leds[XY16(width - 1, y)].nscale8(scale);
}
// just move everything one line down
void MoveDown() {
for (int y = height - 1; y > 0; y--) {
for (int x = 0; x < width; x++) {
leds[XY16(x, y)] = leds[XY16(x, y - 1)];
}
}
}
// just move everything one line down
void VerticalMoveFrom(int start, int end) {
for (int y = end; y > start; y--) {
for (int x = 0; x < width; x++) {
leds[XY16(x, y)] = leds[XY16(x, y - 1)];
}
}
}
// copy the rectangle defined with 2 points x0, y0, x1, y1
// to the rectangle beginning at x2, x3
void Copy(byte x0, byte y0, byte x1, byte y1, byte x2, byte y2) {
for (int y = y0; y < y1 + 1; y++) {
for (int x = x0; x < x1 + 1; x++) {
leds[XY16(x + x2 - x0, y + y2 - y0)] = leds[XY16(x, y)];
}
}
}
// rotate + copy triangle (MATRIX_CENTER_X*MATRIX_CENTER_X)
void RotateTriangle() {
for (int x = 1; x < width / 2; x++) {
for (int y = 0; y < x; y++) {
leds[XY16(x, height / 2 - 1 - y)] = leds[XY16(width / 2 - 1 - x, y)];
}
}
}
// mirror + copy triangle (MATRIX_CENTER_X*MATRIX_CENTER_X)
void MirrorTriangle() {
for (int x = 1; x < width / 2; x++) {
for (int y = 0; y < x; y++) {
leds[XY16(height / 2 - 1 - y, x)] = leds[XY16(width / 2 - 1 - x, y)];
}
}
}
// draw static rainbow triangle pattern (MATRIX_CENTER_XxWIDTH / 2)
// (just for debugging)
void RainbowTriangle() {
for (int i = 0; i < width / 2; i++) {
for (int j = 0; j <= i; j++) {
setPixelFromPaletteIndex(height / 2 - 1 - i, j, i * j * 4);
}
}
}
void BresenhamLine(int x0, int y0, int x1, int y1, byte colorIndex)
{
BresenhamLine(x0, y0, x1, y1, ColorFromCurrentPalette(colorIndex));
}
void BresenhamLine(int x0, int y0, int x1, int y1, CRGB color)
{
int dx = abs(x1 - x0), sx = x0 < x1 ? 1 : -1;
int dy = -abs(y1 - y0), sy = y0 < y1 ? 1 : -1;
int err = dx + dy, e2;
for (;;) {
leds[XY16(x0, y0)] += color;
if (x0 == x1 && y0 == y1) break;
e2 = 2 * err;
if (e2 > dy) {
err += dy;
x0 += sx;
}
if (e2 < dx) {
err += dx;
y0 += sy;
}
}
}
CRGB ColorFromCurrentPalette(uint8_t index = 0, uint8_t brightness = 255, TBlendType blendType = LINEARBLEND) {
return ColorFromPalette(currentPalette, index, brightness, currentBlendType);
}
CRGB HsvToRgb(uint8_t h, uint8_t s, uint8_t v) {
CHSV hsv = CHSV(h, s, v);
CRGB rgb;
hsv2rgb_spectrum(hsv, rgb);
return rgb;
}
void NoiseVariablesSetup() {
noisesmoothing = 200;
noise_x = random16();
noise_y = random16();
noise_z = random16();
noise_scale_x = 6000;
noise_scale_y = 6000;
}
void FillNoise() {
for (uint16_t i = 0; i < width; i++) {
uint32_t ioffset = noise_scale_x * (i - width / 2);
for (uint16_t j = 0; j < height; j++) {
uint32_t joffset = noise_scale_y * (j - height / 2);
byte data = inoise16(noise_x + ioffset, noise_y + joffset, noise_z) >> 8;
uint8_t olddata = noise[i][j];
uint8_t newdata = scale8(olddata, noisesmoothing) + scale8(data, 256 - noisesmoothing);
data = newdata;
noise[i][j] = data;
}
}
}
// non leds2 memory version.
void MoveX(byte delta)
{
CRGB tmp = 0;
for (int y = 0; y < height; y++)
{
// Shift Left: https://codedost.com/c/arraypointers-in-c/c-program-shift-elements-array-left-direction/
// Computationally heavier but doesn't need an entire leds2 array
tmp = leds[XY16(0, y)];
for (int m = 0; m < delta; m++)
{
// Do this delta time for each row... computationally expensive potentially.
for(int x = 0; x < width; x++)
{
leds[XY16(x, y)] = leds [XY16(x+1, y)];
}
leds[XY16(width-1, y)] = tmp;
}
/*
// Shift
for (int x = 0; x < VPANEL_W - delta; x++) {
leds2[XY16(x, y)] = leds[XY16(x + delta, y)];
}
// Wrap around
for (int x = VPANEL_W - delta; x < VPANEL_W; x++) {
leds2[XY16(x, y)] = leds[XY16(x + delta - VPANEL_W, y)];
}
*/
} // end row loop
/*
// write back to leds
for (uint8_t y = 0; y < VPANEL_H; y++) {
for (uint8_t x = 0; x < VPANEL_W; x++) {
leds[XY16(x, y)] = leds2[XY16(x, y)];
}
}
*/
}
void MoveY(byte delta)
{
CRGB tmp = 0;
for (int x = 0; x < width; x++)
{
tmp = leds[XY16(x, 0)];
for (int m = 0; m < delta; m++) // moves
{
// Do this delta time for each row... computationally expensive potentially.
for(int y = 0; y < height; y++)
{
leds[XY16(x, y)] = leds [XY16(x, y+1)];
}
leds[XY16(x, height-1)] = tmp;
}
} // end column loop
} /// MoveY
// Override GFX methods
void drawPixel(int16_t x, int16_t y, uint16_t color) override {
setPixel(x, y, CRGB(color));
}
// Override GFX methods
void drawPixel(int16_t x, int16_t y, CRGB color) override {
setPixel(x, y, color);
}
void fillScreen(uint16_t color) override {
ClearFrame();
}
// Add any other GFX methods you want to override
};
#endif