-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvdspiral.cpp
637 lines (566 loc) · 22.7 KB
/
vdspiral.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
#include "vdspiral.h"
#include <iomanip>
#include <stdio.h>
#include <fstream>
// copy in binary mode
bool copyFile(const char *SRC, const char* DEST) {
std::ifstream src(SRC, std::ios::binary);
std::ofstream dest(DEST, std::ios::binary);
dest << src.rdbuf();
return src && dest;
}
vdspiral::vdspiral(void) // Constructor
: NonCartesianTraj()
, m_eSpiralType(SpiralOut)
, m_Nitlv(1)
, m_dResolution(5.) //mm
{}
vdspiral::~vdspiral(void) // Destructor
{}
bool vdspiral::prep(int Nitlv, double res, std::vector<double> fov, std::vector<double> radius, double dMaxAmplitude, double dMinRiseTime, eSpiralType spiralType, double dLarmorConst, double dGradRasterTime) {
m_dLarmorConst = dLarmorConst;
m_dResolution = res;
m_Nitlv = Nitlv;
m_fov = fov;
m_radius = radius;
m_dMaxAmplitude = dMaxAmplitude;
m_dMinRiseTime = dMinRiseTime;
m_dGradRasterTime = dGradRasterTime;
m_eSpiralType = spiralType;
if (fov.size()!=radius.size())
return false;
double kmax = 5./m_dResolution; // kmax = 1/(2*res) BUT: kmax in 1/cm, res in mm
double Gmax = m_dMaxAmplitude/10.; // mT/m -> G/cm
double Smax = 100./m_dMinRiseTime; // -> G/cm/ms
double T = m_dGradRasterTime/1000.; // us -> ms
// unit transformation of fov and radius
double fovmax = 0.;
for (size_t k=0; k<fov.size();++k) {
fov[k] /= 10.; // mm->cm
if (fov[k]>fovmax)
fovmax = fov[k];
radius[k] *= kmax;
}
if (!vdspiral::vdSpiralDesign(m_Nitlv, fovmax, kmax, Gmax, Smax, fov, radius, spiralType, T))
return false;
#ifdef BUILD_SEQU
if (!vdspiral::prepGradients())
return false;
#endif
return true;
}
bool vdspiral::vdSpiralDesign(int Nitlv, double fovmax, double kmax, double Gmax, double Smax, std::vector<double> fov, std::vector<double> radius, eSpiralType spiralType, double T) {
size_t k; // loop index
//double dr = 1./500. * 1./(fovmax/Nitlv);
double dr = 1./100. * 1./(fovmax/Nitlv); // a little faster
long nr = long(kmax/dr) + 1;
std::vector<double> x, y, z;
x.resize(nr, 0.);
y.resize(nr, 0.);
z.resize(nr, 0.);
// calculate parametrized curve
double theta = 0.;
for (k=0; k<nr; k++) {
double r = k*dr;
double cFoV = fov.back();
for (int l=0; l<fov.size(); ++l) {
if (r < radius[l]) {
if (l==0 || l==fov.size()-1)
cFoV = fov[l];
else {// linearer übergang
double step = (r-radius[l-1])/(radius[l]-radius[l-1]);
cFoV = step * fov[l] + (1.-step)*fov[l-1];
}
break;
}
}
x[k] = r * cos(theta);
y[k] = r * sin(theta);
if (spiralType == DoubleSpiral) {
theta += M_PI*dr*cFoV/Nitlv;
} else {
theta += 2.*M_PI*dr*cFoV/Nitlv;
}
}
int n;
double g0 = 0.; // to simplify sequence development, our gradient will start at 0.
double gfin = 0.; // and end at 0.
double *gx; double *gy; double *gz;
//clock_t start = clock();
minTimeGradientRIV(&x[0], &y[0], &z[0], nr, g0, gfin, Gmax, Smax, T, gx, gy, gz, n, -0.5, m_dLarmorConst/10.);
//clock_t end = clock();
//cout << "start = " << start << " end = " << end << " end-start = " << end-start << " CLOCKS_PER_SEC = " << CLOCKS_PER_SEC << endl;
// determine max gradient amplitudes
m_dAx = 0.;
m_dAy = 0.;
m_dAmp = 0.;
for (k=0; k<n; ++k) {
if (fabs(gx[k])>m_dAx)
m_dAx = fabs(gx[k]);
if (fabs(gy[k])>m_dAy)
m_dAy = fabs(gy[k]);
double dAmp = sqrt(gx[k]*gx[k]+gy[k]*gy[k]);
if (dAmp>m_dAmp)
m_dAmp = dAmp;
}
///////////////////////////////////////////////////////////////////////////////////
// calculate final gradient arrays
///////////////////////////////////////////////////////////////////////////////////
m_vfGx.clear();
m_vfGy.clear();
m_vfGx.resize(n, 0.);
m_vfGy.resize(n, 0.);
// copy & scale gradient to interval -1...+1
for (k=0; k<n; ++k) {
m_vfGx[k] = (float) (gx[k] / (m_dAx>0?m_dAx:1.));
m_vfGy[k] = (float) (gy[k] / (m_dAy>0?m_dAy:1.));
}
delete[] gx; delete[] gy; delete[] gz;
// mirror & copy gradient
if (spiralType == DoubleSpiral) {
m_vfGx.resize(2*n, 0.);
m_vfGy.resize(2*n, 0.);
for (k=0; k<n; ++k) {
m_vfGx[n+k] = m_vfGx[k];
m_vfGy[n+k] = m_vfGy[k];
}
for (k=0; k<n/2; ++k) {
std::swap(m_vfGx[k], m_vfGx[n-1-k]);
std::swap(m_vfGy[k], m_vfGy[n-1-k]);
}
n *= 2;
} else if (spiralType == ROI) {
m_vfGx.resize(2*n+4, 0.);
m_vfGy.resize(2*n+4, 0.);
for (k=0; k<n; ++k) {
m_vfGx[n+k+4] = -m_vfGx[k];
m_vfGy[n+k+4] = -m_vfGy[k];
}
for (k=0; k<n/2; ++k) {
std::swap(m_vfGx[n+k+4], m_vfGx[2*n+3-k]);
std::swap(m_vfGy[n+k+4], m_vfGy[2*n+3-k]);
}
m_vfGx[n] = m_vfGx[n-1]/2.;
m_vfGy[n] = m_vfGy[n-1]/2.;
m_vfGx[n+1] = m_vfGx[n-1]/4.;
m_vfGy[n+1] = m_vfGy[n-1]/4.;
m_vfGx[n+2] = m_vfGx[n+4]/4.;
m_vfGy[n+2] = m_vfGy[n+4]/4.;
m_vfGx[n+3] = m_vfGx[n+4]/2.;
m_vfGy[n+3] = m_vfGy[n+4]/2.;
n = 2*n+2;
} else if (spiralType == SpiralDouble) {
m_vfGx.resize(2*n, 0.);
m_vfGy.resize(2*n, 0.);
for (k=0; k<n; ++k) {
m_vfGx[n+k] = m_vfGx[k];
m_vfGy[n+k] = m_vfGy[k];
}
for (k=0; k<n/2; ++k) {
std::swap(m_vfGx[n+k], m_vfGx[2*n-1-k]);
std::swap(m_vfGy[n+k], m_vfGy[2*n-1-k]);
}
n *= 2;
} else if (spiralType == RIO) {
m_vfGx.resize(2*n+2, 0.);
m_vfGy.resize(2*n+2, 0.);
for (k=0; k<n; ++k) {
m_vfGx[n+k+2] = -m_vfGx[k];
m_vfGy[n+k+2] = -m_vfGy[k];
}
for (k=0; k<n/2; ++k) {
std::swap(m_vfGx[k], m_vfGx[n-1-k]);
std::swap(m_vfGy[k], m_vfGy[n-1-k]);
}
m_vfGx[n] = m_vfGx[n-1]/2.;
m_vfGy[n] = m_vfGy[n-1]/2.;
m_vfGx[n+1] = m_vfGx[n+2]/2.;
m_vfGy[n+1] = m_vfGy[n+2]/2.;
n = 2*n+2;
}
// add points at start and end of gradient to avoid slewrate overflow
m_vfGx.insert(m_vfGx.begin(), m_vfGx[0]/2.);
m_vfGy.insert(m_vfGy.begin(), m_vfGy[0]/2.);
m_vfGx.push_back(m_vfGx.back()/2.);
m_vfGy.push_back(m_vfGy.back()/2.);
n+=2;
///////////////////////////////////////////////////////////////////////////////////////////////////
// G/cm -> mT/m
m_dAx *= 10.;
m_dAy *= 10.;
m_dAmp *= 10.;
// now calculate the gradient moments
m_dMomX = 0.; m_dMomY = 0.; m_dMomZ = 0.;
for (k=0; k < (int)m_vfGx.size(); ++k) {
m_dMomX += m_dAx * m_vfGx[k] * m_dGradRasterTime;
m_dMomY += m_dAy * m_vfGy[k] * m_dGradRasterTime;
}
m_dPreMomX = 0.; m_dPreMomY = 0.; m_dPreMomZ = 0.;
m_dPostMomX = 0.; m_dPostMomY = 0.; m_dPostMomZ = 0.;
if (spiralType==SpiralIn) {
m_dPreMomX = m_dMomX;
m_dPreMomY = m_dMomY;
// we have to time-reverse the trajectory!
for (long k=0; k<(int)m_vfGx.size()/2; ++k) {
std::swap(m_vfGx[k],m_vfGx[m_vfGx.size()-1-k]);
std::swap(m_vfGy[k],m_vfGy[m_vfGy.size()-1-k]);
}
} else if (spiralType==SpiralOut) {
m_dPostMomX = m_dMomX;
m_dPostMomY = m_dMomY;
} else if (spiralType==DoubleSpiral) {
m_dPreMomX = m_dMomX/2.;
m_dPreMomY = m_dMomY/2.;
m_dPostMomX = m_dMomX/2.;
m_dPostMomY = m_dMomY/2.;
} else if (spiralType==RIO) {
for (k=0; k < (int)m_vfGx.size()/2; ++k) {
m_dPreMomX += m_dAx * m_vfGx[k] * m_dGradRasterTime;
m_dPreMomY += m_dAy * m_vfGy[k] * m_dGradRasterTime;
m_dPostMomX += m_dAx * m_vfGx[k+m_vfGx.size()/2] * m_dGradRasterTime;
m_dPostMomY += m_dAy * m_vfGy[k+m_vfGx.size()/2] * m_dGradRasterTime;
}
}
return true;
}
bool vdspiral::setSpiralType(eSpiralType spiralType) {
bool bStatus = true;
if (spiralType != m_eSpiralType) {
// if ((m_eSpiralType != DoubleSpiral) && (spiralType != DoubleSpiral)) {
// // we have to time-reverse the trajectory!
// for (long k=0; k<(int)m_vfGx.size()/2; ++k) {
// std::swap(m_vfGx[k],m_vfGx[m_vfGx.size()-1-k]);
// std::swap(m_vfGy[k],m_vfGy[m_vfGy.size()-1-k]);
// }
// std::swap(m_dPreMomX, m_dPostMomX);
// std::swap(m_dPreMomY, m_dPostMomY);
// std::swap(m_dPreMomZ, m_dPostMomZ);
// #ifdef BUILD_SEQU
// bStatus = vdspiral::prepGradients();
// #endif
// return bStatus;
// } else { // we need to recalculate the trajectory
m_eSpiralType = spiralType;
return this->prep(m_Nitlv, m_dResolution, m_fov, m_radius, m_dMaxAmplitude, m_dMinRiseTime, m_eSpiralType, m_dLarmorConst, m_dGradRasterTime);
// }
}
return true;
}
bool vdspiral::calcTrajectory(std::vector<float> &vfKx, std::vector<float> &vfKy, std::vector<float> &vfDcf, long lADCSamples, int gridsize, double dADCshift, double dGradDelay) {
//only spiral out supported for now!
if (m_vfGx.size()==0 || m_vfGx.size()!=m_vfGy.size())
return false;
long lGradSamples = m_vfGx.size();
long k,l;
double dwelltime = (lGradSamples*m_dGradRasterTime + dADCshift)/lADCSamples;
// iflag used in spline method to signal error
int *iflag;
int iflagp;
iflag = &iflagp;
int *last;
int lastp = 0;
last = &lastp;
// kgradx,kgrady: k-space trajectory on gradient raster
int nFillpre = 2;
int nFillpost = 2;
if (m_eSpiralType == SpiralOut)
nFillpre += int(dADCshift/m_dGradRasterTime);
else
nFillpost += int(dADCshift/m_dGradRasterTime);
long lFilledSamples = lGradSamples+nFillpre+nFillpost;
double *kgradx = new double[lFilledSamples];
double *kgrady = new double[lFilledSamples];
for (k=0;k<nFillpre+1;++k) {
kgradx[k] = 0.;
kgrady[k] = 0.;
}
double cumsumx=0.,cumsumy=0.;
for (k=1;k<lGradSamples;++k) {
cumsumx += m_dAx * (m_vfGx[k]+m_vfGx[k-1])/2.;
kgradx[k+nFillpre] = cumsumx * m_dGradRasterTime * m_dLarmorConst/1e5;
cumsumy += m_dAy * (m_vfGy[k]+m_vfGy[k-1])/2.;
kgrady[k+nFillpre] = cumsumy * m_dGradRasterTime * m_dLarmorConst/1e5;
}
for (k=0;k<nFillpost;++k) {
cumsumx += m_dAx * m_vfGx[lGradSamples-1]/2.;
cumsumy += m_dAy * m_vfGy[lGradSamples-1]/2.;
kgradx[k+nFillpre+lGradSamples] = cumsumx * m_dGradRasterTime * m_dLarmorConst/1e5;
kgrady[k+nFillpre+lGradSamples] = cumsumy * m_dGradRasterTime * m_dLarmorConst/1e5;
}
double *coeff1x = new double[lFilledSamples];
double *coeff2x = new double[lFilledSamples];
double *coeff3x = new double[lFilledSamples];
double *coeff1y = new double[lFilledSamples];
double *coeff2y = new double[lFilledSamples];
double *coeff3y = new double[lFilledSamples];
double *t_grad = new double[lFilledSamples];
// Initalize gradient raster time
for (k=0;k<lFilledSamples;++k)
t_grad[k] = (k-nFillpre+1)*m_dGradRasterTime;
spline(lFilledSamples, 0, 0, 0, 0, t_grad, kgradx, coeff1x, coeff2x, coeff3x, iflag);
spline(lFilledSamples, 0, 0, 0, 0, t_grad, kgrady, coeff1y, coeff2y, coeff3y, iflag);
// --------------------------------------------------------------
// Interpolated curve
// --------------------------------------------------------------
vfKx.resize(lADCSamples*m_Nitlv,0.);
vfKy.resize(lADCSamples*m_Nitlv,0.);
for (k=0; k<lADCSamples; k++) {
// Time for ACD sampling point
double t_relativeToGrad = (k+0.5)*dwelltime + dGradDelay;
if (m_eSpiralType == SpiralOut)
t_relativeToGrad -= dADCshift;
else
t_relativeToGrad += dADCshift;
vfKx[k] = (float) seval(lFilledSamples, t_relativeToGrad, t_grad, kgradx, coeff1x, coeff2x, coeff3x, last);
vfKy[k] = (float) seval(lFilledSamples, t_relativeToGrad, t_grad, kgrady, coeff1y, coeff2y, coeff3y, last);
}
delete[] kgradx;
delete[] kgrady;
delete[] t_grad;
delete[] coeff1x;
delete[] coeff2x;
delete[] coeff3x;
delete[] coeff1y;
delete[] coeff2y;
delete[] coeff3y;
if (m_eSpiralType == SpiralIn) {
//for spiral in: make sure that trajectory ends in the center of k-space
for (k=0; k<lADCSamples; k++) {
vfKx[k] -= vfKx[lADCSamples-1];
vfKy[k] -= vfKy[lADCSamples-1];
}
} else if (m_eSpiralType == DoubleSpiral || m_eSpiralType == RIO) {
//for double spiral: make sure that middle of trajectory is in the center of k-space
float midX = vfKx[lADCSamples/2];
float midY = vfKy[lADCSamples/2];
for (k=0; k<lADCSamples; k++) {
vfKx[k] -= midX;
vfKy[k] -= midY;
}
}
//now calculate trajectory for other interleaves by rotation
for (k=1;k<m_Nitlv;++k) {
float phi = (float) (2.* M_PI * k / m_Nitlv);
if (m_eSpiralType == DoubleSpiral && m_Nitlv%2==0) {
// we only need to distribute the spirals over M_PI
phi /= 2.f;
}
for (l=0; l<lADCSamples; ++l) {
// vfKx[l+k*lADCSamples] = (float) (cos(phi) * vfKx[l] + sin(phi) * vfKy[l]);
// vfKy[l+k*lADCSamples] = (float) (-sin(phi) * vfKx[l] + cos(phi) * vfKy[l]);
vfKx[l+k*lADCSamples] = (float) (cos(phi) * vfKx[l] - sin(phi) * vfKy[l]);
vfKy[l+k*lADCSamples] = (float) (sin(phi) * vfKx[l] + cos(phi) * vfKy[l]);
}
}
// Calculate density compensation function
vfDcf = jacksonDCF(vfKx, vfKy, gridsize, 1.f);
return true;
}
std::vector<float> vdspiral::jacksonDCF(std::vector<float> &vfKx, std::vector<float> &vfKy, int gridsize, float zeta) {
int k,l,m;
long nsamples = vfKx.size()/m_Nitlv;
//scale zeta:
//find maxk:
float kmax = 0.f;
for (k=0;k<nsamples;++k) {
float tmp = vfKx[k]*vfKx[k]+vfKy[k]*vfKy[k];
if (tmp>kmax)
kmax = fabs(vfKx[k]);
}
kmax = sqrt(kmax);
zeta *= 2.f * kmax * 2.f/gridsize;
//cut dcf at 0.85 of kmax
for (k=0;k<nsamples;++k) {
float tmp = sqrt(vfKx[k]*vfKx[k]+vfKy[k]*vfKy[k]);
if (tmp>0.85f*kmax)
break;
}
// wi is cutoff and normalized to average wi between cutoff_ix1 and cutoff_ix2
int cutoff_ix1 = k;
int cutoff_ix2 = cutoff_ix1 + (nsamples-cutoff_ix1)/4+1;
float zeta_sq = zeta*zeta;
std::vector<float> wi(nsamples*m_Nitlv,1.);
for (k=0;k<nsamples;++k) {
float goal = 0.;
float kxk = vfKx[k];
float kyk = vfKy[k];
// vorsicht: Skript nimmt gleichverteilte Interleaves an (Winkel)
for (l=0; l<m_Nitlv;l++) {
for (m=0;m<nsamples;++m) {
float dx = vfKx[m+l*nsamples] - kxk;
dx = dx*dx;
if (dx < zeta_sq) {
float dr = vfKy[m+l*nsamples] - kyk;
dr = dx + dr*dr;
if (dr < zeta_sq) {
dr = (float) sqrt(dr);
//simple hann filter
float kern = 0.5f - 0.5f * (float)cos(2.*M_PI*(1.+dr/zeta)/2.);
goal += kern;
}
}
}
}
wi[k] = 1.f/goal;
}
// determine cutoff value for wi
float cutoff_val = 0.;
for (k=cutoff_ix1;k<cutoff_ix2;++k)
cutoff_val += wi[k];
cutoff_val /= MAX(1,cutoff_ix2-cutoff_ix1);
// normalize wi by cutoff value
for (k=0;k<nsamples;++k)
wi[k] = MIN(1.f,wi[k]/cutoff_val);
//now copy wi from interleave 0 to other interleaves;
for (k=1; k<m_Nitlv;++k) {
for (l=0; l<nsamples; ++l)
wi[l+k*nsamples] = wi[l];
}
return wi;
}
void vdspiral::saveTrajectory(long lADCSamples, int gridsize, double dADCshift, double dGradDelay) {
#ifdef WIN32
std::vector<float> vfKx, vfKy, vfDcf;
this->calcTrajectory(vfKx, vfKy, vfDcf, lADCSamples, gridsize, dADCshift, dGradDelay);
std::ofstream kxfile, kyfile, wifile;
time_t rawtime;
struct tm * timeinfo;
char buffer [80];
time ( &rawtime );
timeinfo = localtime ( &rawtime );
strftime (buffer,80,"%Y%m%d_%H%M%S",timeinfo);
std::string s;
std::stringstream ss;
ss << buffer;
ss >> s;
#if defined(__linux__)
std::string pathname = "/tmp/";
#else
std::string pathname = "C:\\Temp\\";
#endif
std::string kxfilename = pathname + "spiral_kx_" + s + ".csv";
std::string kyfilename = pathname + "spiral_ky_" + s + ".csv";
std::string wifilename = pathname + "spiral_wi_" + s + ".csv";
kxfile.open(kxfilename.c_str());
kyfile.open(kyfilename.c_str());
wifile.open(wifilename.c_str());
for (size_t k=0; k<vfKx.size(); ++k) {
if (k != 0) {
kxfile << ", ";
kyfile << ", ";
wifile << ", ";
}
kxfile << vfKx[k];
kyfile << vfKy[k];
wifile << vfDcf[k];
}
kxfile.close();
kyfile.close();
wifile.close();
#endif
}
#ifdef BUILD_SEQU
void vdspiral::saveGradientShapes(sGRAD_PULSE* pGradPreX, sGRAD_PULSE* pGradPreY, sGRAD_PULSE* pGradPostX, sGRAD_PULSE* pGradPostY) {
#ifdef WIN32
if (m_vfGx.size()*m_vfGy.size()==0)
return;
time_t rawtime;
struct tm * timeinfo;
char buffer [80];
time ( &rawtime );
timeinfo = localtime ( &rawtime );
strftime (buffer,80,"%Y%m%d_%H%M%S",timeinfo);
std::string s;
std::stringstream ss;
ss << buffer;
ss >> s;
#if defined(__linux__)
std::string pathname = "/tmp/";
#else
// std::string pathname = "C:\\Temp\\";
std::string pathname = "gradshapes\\";
#endif
std::string filename_gr = pathname + "spiral_dephaser_Gr.csv";
std::string filename_gp = pathname + "spiral_dephaser_Gp.csv";
// try to delete dephaser gradient files (so that they only exists if written below)
remove(filename_gr.c_str());
remove(filename_gp.c_str());
std::ofstream gpfile, grfile;
if ((m_eSpiralType != SpiralOut) && (pGradPreX!=NULL) && (pGradPreY!=NULL)) {
filename_gr = pathname + "spiral_dephaser_Gr.csv";
filename_gp = pathname + "spiral_dephaser_Gp.csv";
gpfile.open(filename_gr.c_str(), std::ofstream::out | std::ofstream::trunc);
grfile.open(filename_gp.c_str(), std::ofstream::out | std::ofstream::trunc);
long prephase_time = MAX(pGradPreX->getTotalTime(), pGradPreY->getTotalTime());
for (size_t t = 0; t < prephase_time; t+=GRAD_RASTER_TIME) {
// account for distant possibility that gx and gy gradients do not have same length
long tx = t - prephase_time + pGradPreX->getTotalTime();
long ty = t - prephase_time + pGradPreY->getTotalTime();
if (tx != 0) {
gpfile << ", ";
}
if (tx != 0) {
grfile << ", ";
}
gpfile << std::setprecision(12) << pGradPreX->getCurrentAmplitude(tx);
grfile << std::setprecision(12) << pGradPreY->getCurrentAmplitude(ty);
}
gpfile.close();
grfile.close();
copyFile(filename_gr.c_str(), (pathname + "spiral_dephaser_Gr_" + s + ".csv").c_str());
copyFile(filename_gp.c_str(), (pathname + "spiral_dephaser_Gp_" + s + ".csv").c_str());
}
// if ((m_eSpiralType != SpiralIn) && (pGradPostX!=NULL) && (pGradPostY!=NULL)) {
// filename = pathname + "spiral_rephaser_read_" + s + ".csv";
// gpfile.open(filename.c_str());
// filename = pathname + "spiral_rephaser_phase_" + s + ".csv";
// grfile.open(filename.c_str());
// long prephase_time = MAX(pGradPostX->getTotalTime(), pGradPostY->getTotalTime());
// for (size_t t = 0; t < prephase_time; t+=GRAD_RASTER_TIME) {
// // account for distant possibility that gx and gy gradients do not have same length
// long tx = t - prephase_time + pGradPostX->getTotalTime();
// long ty = t - prephase_time + pGradPostY->getTotalTime();
// if (tx != 0) {
// gpfile << ", ";
// }
// if (tx != 0) {
// grfile << ", ";
// }
// gpfile << std::setprecision(12) << pGradPostX->getCurrentAmplitude(tx);
// grfile << std::setprecision(12) << pGradPostY->getCurrentAmplitude(ty);
// }
// gpfile.close();
// grfile.close();
// }
filename_gr = pathname + "spiral_Gr.csv";
filename_gp = pathname + "spiral_Gp.csv";
gpfile.open(filename_gr.c_str(), std::ofstream::out | std::ofstream::trunc);
grfile.open(filename_gp.c_str(), std::ofstream::out | std::ofstream::trunc);
for (size_t t=0; t<m_GSpiralX.getTotalTime(); t+=GRAD_RASTER_TIME) {
if (t != 0) {
gpfile << ", ";
grfile << ", ";
}
gpfile << std::setprecision(12) << m_GSpiralX.getCurrentAmplitude(t);
grfile << std::setprecision(12) << m_GSpiralY.getCurrentAmplitude(t);
}
gpfile.close();
grfile.close();
copyFile(filename_gr.c_str(), (pathname + "spiral_Gr_" + s + ".csv").c_str());
copyFile(filename_gp.c_str(), (pathname + "spiral_Gp_" + s + ".csv").c_str());
#endif
}
bool vdspiral::prepGradients() {
m_GSpiralX.setRampShape(&m_vfGx[0], m_vfGx.size(), 0, true);
m_GSpiralX.set(GRAD_RASTER_TIME*m_vfGx.size(), GRAD_RASTER_TIME*m_vfGx.size(), 0, m_dAx);
if (!m_GSpiralX.prep()) {
return false;
}
m_GSpiralY.setRampShape(&m_vfGy[0], m_vfGy.size(), 0, true);
m_GSpiralY.set(GRAD_RASTER_TIME*m_vfGy.size(), GRAD_RASTER_TIME*m_vfGy.size(), 0, m_dAy);
if (!m_GSpiralY.prep()) {
return false;
}
return true;
}
#endif