diff --git a/R/lap.R b/R/lap.R index 7fefc23a..6182ed63 100644 --- a/R/lap.R +++ b/R/lap.R @@ -41,6 +41,16 @@ #' 3, 6, 2, 2, 9), 4, 5, byrow = TRUE) #' #' LAPJV(problem) +#' @seealso +#' Implementations of the Hungarian algorithm exist in \pkg{adagio}, +#' \pkg{RcppHungarian}, and \pkg{clue} and \pkg{lpSolve}; for larger matrices, +#' these are substantially slower. (See discussion at [Stack Overflow]( +#' https://stackoverflow.com/questions/72806265/).) +#' +#' The JV algorithm is implemented for square matrices in the Bioconductor +#' package [`GraphAlignment::LinearAssignment()`]( +#' https://www.bioconductor.org/packages/release/bioc/html/GraphAlignment.html). +#' #' @export LAPJV <- function(x) { dims <- dim(x) diff --git a/man/LAPJV.Rd b/man/LAPJV.Rd index a6e8d29e..561d0032 100644 --- a/man/LAPJV.Rd +++ b/man/LAPJV.Rd @@ -47,6 +47,14 @@ LAPJV(problem) \references{ \insertAllCited{} } +\seealso{ +Implementations of the Hungarian algorithm exist in \pkg{adagio}, +\pkg{RcppHungarian}, and \pkg{clue} and \pkg{lpSolve}; for larger matrices, +these are substantially slower. (See discussion at \href{https://stackoverflow.com/questions/72806265/}{Stack Overflow}.) + +The JV algorithm is implemented for square matrices in the Bioconductor +package \href{https://www.bioconductor.org/packages/release/bioc/html/GraphAlignment.html}{\code{GraphAlignment::LinearAssignment()}}. +} \author{ \href{https://github.com/yongyanghz/LAPJV-algorithm-c/blob/master/LAPJV/lap.cpp}{C++ code} by Roy Jonker, MagicLogic Optimization Inc. \href{mailto:roy_jonker@magiclogic.com}{roy_jonker@magiclogic.com},