A discussion group / mailing list: http://groups.google.com/group/openstack-neat
This blueprint has been submitted to OpenStack Compute (Nova) Blueprints:
https://blueprints.launchpad.net/nova/+spec/dynamic-consolidation-of-virtual-machines
The blueprint is also available in the following formats:
% OpenStack Neat: A Framework for Dynamic Consolidation of Virtual Machines in OpenStack Clouds % Anton Beloglazov; Rajkumar Buyya % 14th of August 2012
OpenStack Neat is a project intended to provide an extension to OpenStack implementing dynamic consolidation of Virtual Machines (VMs) using live migration. The major objective of dynamic VM consolidation is to improve the utilization of physical resources and reduce energy consumption by re-allocating VMs using live migration according to their real-time resource demand and switching idle hosts to the sleep mode. For example, assume that two VMs are placed on two different hosts, but the combined resource capacity required by the VMs to serve the current load can be provided by just one of the hosts. Then, one of the VMs can be migrated to the host serving the other VM, and the idle host can be switched to a low power mode to save energy.
Apart from consolidating VMs, the system should be able to react to increases in the resource demand and deconsolidate VMs when necessary to avoid performance degradation. In general, the problem of dynamic VM consolidation can be split into 4 sub-problems:
- Deciding when a host is considered to be underloaded, so that all the VMs should be migrated from it, and the host should be switched to a low power mode, such as the sleep mode.
- Deciding when a host is considered to be overloaded, so that some VMs should be migrated from the host to other hosts to avoid performance degradation.
- Selecting VMs to migrate from an overloaded host out of the full set of the VMs currently served by the host.
- Placing VMs selected for migration to other active or re-activated hosts.
This work is conducted within the Cloud Computing and Distributed Systems (CLOUDS) Laboratory at the University of Melbourne. The problem of dynamic VM consolidation considering Quality of Service (QoS) constraints has been studied from the theoretical perspective and algorithms addressing the sub-problems listed above have been proposed [1], [2]. The algorithms have been evaluated using CloudSim and real-world workload traces collected from more than a thousand PlanetLab VMs hosted on servers located in more than 500 places around the world.
The aim of the OpenStack Neat project is to provide an extensible framework for dynamic consolidation of VMs based on the OpenStack platform. The framework should provide an infrastructure enabling the interaction of components implementing the 4 decision-making algorithms listed above. The framework should allow configuration-driven switching of different implementations of the decision-making algorithms. The implementation of the framework will include the algorithms proposed in our previous works [1], [2].
The functionality covered by this project will be implemented in the
form of services separate from the core OpenStack services. The services
of this project will interact with the core OpenStack services using
their public APIs. It will be required to create a new Keystone user
within the service
tenant. The project will also require a new MySQL
database for storing historical data on the resource usage by VMs. The
project will provide a script for automated initialization of the
database. The services provided by the project will need to be run on
the management as well as compute hosts.
The problem of data center operation is high energy consumption, which has risen by 56% from 2005 to 2010, and in 2010 accounted to be between 1.1% and 1.5% of the global electricity use [3]. Apart from high operating costs, this results in substantial carbon dioxide (CO2) emissions, which are estimated to be 2% of the global emissions [4]. The problem has been partially addressed by improvements in the physical infrastructure of modern data centers. As reported by the Open Compute Project, Facebook’s Oregon data center achieves a Power Usage Effectiveness (PUE) of 1.08, which means that approximately 93% of the data center’s energy consumption are consumed by the computing resources. Therefore, now it is important to focus on the resource management aspect, i.e. ensuring that the computing resources are efficiently utilized to serve applications.
Dynamic consolidation of VMs has been shown to be efficient in improving the utilization of data center resources and reducing energy consumption, as demonstrated by numerous studies [5–16]. In this project, we aim to implement an extensible framework for dynamic VM consolidation specifically targeted at the OpenStack platform.
- As a Cloud Administrator or Systems Integrator, I want to support dynamic VM consolidation to improve the utilization of the data center’s resources and reduce energy consumption.
- As a Cloud Administrator, I want to minimize the price of the service provided to the consumers by reducing the operating costs through the reduced energy consumption.
- As a Cloud Administrator, I want to decrease the carbon dioxide emissions into the environment by reducing energy consumption by the data center’s resources.
- As a Cloud Administrator, I want to provide QoS guarantees to the consumers, while applying dynamic VM consolidation.
- As a Cloud Service Consumer, I want to pay the minimum price for the service provided through the minimized energy consumption of the computing resources.
- As a Cloud Service Consumer, I want to use Green Cloud resources, whose provider strives to reduce the impact on the environment in terms of carbon dioxide emissions.
- Nova uses a shared storage for storing VM instance data, thus supporting live migration of VMs. For example, a shared storage can be provided using Network File System (NFS), or GlusterFS as described in [17].
- All the compute hosts must have a user, which is enabled to switch the machine into the sleep mode, which is also referred to as “Suspend to RAM”. This user is used by the global controller to connect to the compute hosts using SSH and switch them into the sleep mode when necessary.
The system is composed of a number of components and data stores, some of which are deployed on the compute hosts, and some on the management host (Figure 1). In the following sections, we discuss the design and interaction of the components, as well as the specification of the data stores, and available configuration options.
As shown in Figure 1, the system is composed of three main components:
- Global manager – a component that is deployed on the management host and makes global management decisions, such as mapping VM instances on hosts, and initiating VM migrations.
- Local manager – a component that is deployed on every compute host and makes local decisions, such as deciding that the host is underloaded or overloaded, and selecting VMs to migrate to other hosts.
- Data collector – a component that is deployed on every compute host and is responsible for collecting data about the resource usage by VM instances, as well as storing these data locally and submitting the data to the central database.
The global manager is deployed on the management host and is responsible for making VM placement decisions and initiating VM migrations. It exposes a REST web service, which accepts requests from local managers. The global manager processes only one type of requests – reallocation of a set of VM instances. As shown in Figure 2, once a request is received, the global manager invokes a VM placement algorithm to determine destination hosts to migrate the VMs to. Once a VM placement is determined, the global manager submits a request to the Nova API to migrate the VMs. The global manager is also responsible for switching idle hosts to the sleep mode, as well as re-activating hosts when necessary.
The global manager is agnostic of a particular implementation of the VM
placement algorithm in use. The VM placement algorithm to use can be
specified in the configuration file described later using the
algorithm_vm_placement
option. A VM placement algorithm can call the
Nova API to obtain the information about host characteristics and
current VM placement. If necessary, it can also query the central
database to obtain the historical information about the resource usage
by the VMs.
The global manager exposes a REST web service (REST API) for accepting
VM migration requests from local managers. The service URL is defined
according to configuration options defined in /etc/neat/neat.conf
,
which is discussed further in the paper. The two relevant options are:
global_manager_host
– the name of the host running the global manager;global_manager_port
– the port of the REST web service exposed by the global manager.
The service URL is composed as follows:
http://<global_manager_host>:<global_manager_port>/
Since the global manager processes only a single type of requests, it
exposes only one resource: /
. The resource is accessed using the
PUT
method, which initiates a VM reallocation process. This service
requires the following parameters:
admin_tenant_name
– the admin tenant name of Neat’s admin user registered in Keystone. In this context, this parameter is not used to authenticate in any OpenStack service, rather it is used to authenticate the client making a request as being allowed to access the web service.admin_user
– the admin user name of Neat’s admin user registered in Keystone. In this context, this parameter is not used to authenticate in any OpenStack service, rather it is used to authenticate the client making a request as being allowed to access the web service.admin_password
– the admin password of Neat’s admin user registered in Keystone. In this context, this parameter is not used to authenticate in any OpenStack service, rather it is used to authenticate the client making a request as being allowed to access the web service.vm_uuids
– a coma-separated list of UUIDs of the VMs required to be migrated.reason
– an integer specifying the resource for migration: 0 – underload, 1 – overload.
If the provided credentials are correct and the vm_uuids
parameter
includes a list of UUIDs of existing VMs in the correct format, the
service responses with the HTTP status code 200 OK
.
The service uses standard HTTP error codes to response in cases of errors detected. The following error codes are used:
400
– bad input parameter: incorrect or missing parameters;401
– unauthorized: user credentials are missing;403
– forbidden: user credentials do not much the ones specified in the configuration file;405
– method not allowed: the request is made with a method other than the only supportedPUT
;422
– unprocessable entity: one or more VMs could not be found using the list of UUIDs specified in thevm_uuids
parameter.
One of the main features required to be supported by the hardware in order to take advantage of dynamic VM consolidation to save energy is Wake-on-LAN. This technology allows a computer being in the sleep (Suspend to RAM) mode to be re-activated by sending a special packet over network. This technology has been introduced in 1997 by the Advanced Manageability Alliance (AMA) formed by Intel and IBM, and is currently supported by most of the modern hardware.
Once the required VM migrations are completed, the global manager
connects to the source host and switches into in the Suspend to RAM
mode. Switching to the Suspend to RAM mode can be done, for example,
using programs included in the pm-utils
package. To check whether
the Suspend to RAM mode is supported, the following command can be used:
pm-is-supported --suspend
The Suspend to RAM mode is supported if the command returns 0, otherwise it is not supported. In this case, the Suspend to RAM mode can be replaced with the Standby or Suspend to Disk (Hibernate) modes. The following command can be used to switch the host into the Suspend to RAM mode:
pm-suspend
To re-activate a host using the Wake-on-LAN technology, it is necessary
to send a special packet, called the magic packet. This can be done
using the ether-wake
program as follows:
ether-wake <mac address>
Where <mac address>
is replaced with the actual MAC address of the
host.
The local manager component is deployed on every compute host and is invoked periodically to determine when it necessary to reallocate VM instances from the host. A high-level view of the workflow performed by the local manager is shown in Figure 3. First of all, it reads from the local storage the historical data on the resource usage by VMs stored by the data collector described in the next section. Then, the local manager invokes the specified in the configuration underload detection algorithm to determine whether the host is underloaded. If the host is underloaded, the local manager sends a request to the global manager’s REST API to migrate all the VMs from the host and switch the host to the sleep mode.
If the host is not underloaded, the local manager proceeds to invoking the specified in the configuration overload detection algorithm. If the host is overloaded, the local manager invokes the configured VM selection algorithm to select the VMs to migrate from the host. Once the VMs to migrate from the host are selected, the local manager sends a request to the global manager’s REST API to migrate the selected VMs from the host.
Similarly to the global manager, the local manager can be configured to use specific underload detection, overload detection, and VM selection algorithm using the configuration file discussed further in the paper.
Underload detection is done by a specified in the configuration
underload detection algorithm (algorithm_underload_detection
). The
algorithm has a pre-defined interface, which allows substituting
different implementations of the algorithm. The configured algorithm is
invoked by the local manager and accepts historical data on the resource
usage by VMs running on the host as an input. An underload detection
algorithm returns a decision of whether the host is underloaded.
Overload detection is done by a specified in the configuration overload
detection algorithm (algorithm_overload_detection
). Similarly to
underload detection, all overload detection algorithms implement a
pre-defined interface to enable configuration-driven substitution of
difference implementations. The configured algorithm is invoked by the
local manager and accepts historical data on the resource usage by VMs
running on the host as an input. An overload detection algorithm returns
a decision of whether the host is overloaded.
If a host is overloaded, it is necessary to select VMs to migrate from
the host to avoid performance degradation. This is done by a specified
in the configuration VM selection algorithm
(algorithm_vm_selection
). Similarly to underload and overload
detection algorithms, different VM selection algorithm can by plugged in
according to the configuration. A VM selection algorithm accepts
historical data on the resource usage by VMs running on the host and
returns a set of VMs to migrate from the host.
The data collector is deployed on every compute host and is executed periodically to collect the CPU utilization data for each VM running on the host and stores the data in the local file-based data store. The data is stored as the average number of MHz consumed by a VM during the last measurement interval. The CPU usage data are stored as integers. This data format is portable: the stored values can be converted to the CPU utilization for any host or VM type, supporting heterogeneous hosts and VMs.
The actual data is obtained from Libvirt in the form of the CPU time
consumed by a VM to date. Using the CPU time collected at the previous
time frame, the CPU time for the past time interval is calculated.
According to the CPU frequency of the host and the length of the time
interval, the CPU time is converted into the required average MHz
consumed by the VM over the last time interval. The collected data are
stored both locally and submitted to the central database. The number of
the latest data values stored locally and passed to the underload /
overload detection and VM selection algorithms is defined using the
data_collector_data_length
option in the configuration file.
At the beginning of every execution, the data collector obtains the set of VMs currently running on the host using the Nova API and compares them to the VMs running on the host at the previous time step. If new VMs have been found, the data collector fetches the historical data about them from the central database and stores the data in the local file-based data store. If some VMs have been removed, the data collector removes the data about these VMs from the local data store.
As shown in Figure 1, the system contains two types of data stores:
- Central database – a database deployed on the management host.
- Local file-based data storage – a data store deployed on every compute host and used for storing resource usage data to use by local managers.
The details about the data stores are given in the following subsections.
The central database is used for storing historical data on the resource
usage by VMs running on all the compute hosts. The database is populated
by data collectors deployed on the compute hosts. The data are consumed
by VM placement algorithms. The database contains two tables: vms
and vm_resource_usage
.
The vms
table is used for storing the mapping between UUIDs of VMs
and the internal database IDs:
CREATE TABLE vms ( # the internal ID of a VM id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT, # the UUID of the VM uuid CHAR(36) NOT NULL, PRIMARY KEY (id) ) ENGINE=MyISAM;
The vm_resource_usage
table is used for storing the data about the
resource usage by VMs:
CREATE TABLE vm_resource_usage ( # the ID of the record id BIGINT UNSIGNED NOT NULL AUTO_INCREMENT, # the id of the corresponding VM vm_id BIGINT UNSIGNED NOT NULL, # the time of the data collection timestamp TIMESTAMP NOT NULL, # the average CPU usage in MHz cpu_mhz MEDIUMINT UNSIGNED NOT NULL, PRIMARY KEY (id) ) ENGINE=MyISAM;
The data collector stores the resource usage information locally in
files in the <local_data_directory>/vm
directory, where
<local_data_directory>
is defined in the configuration file using
the local_data_directory
option. The data for each VM are stored in
a separate file named according to the UUID of the corresponding VM. The
format of the files is a new line separated list of integers
representing the average CPU consumption by the VMs in MHz during the
last measurement interval.
The configuration of OpenStack Neat is stored in /etc/neat/neat.conf
in the standard INI format using the #
character for denoting
comments. The configuration includes the following options:
sql_connection
– the host name and credentials for connecting to the MySQL database specified in the format supported by SQLAlchemy;admin_tenant_name
– the admin tenant name for authentication with Nova using Keystone;admin_user
– the admin user name for authentication with Nova using Keystone;admin_password
– the admin password for authentication with Nova using Keystone;global_manager_host
– the name of the host running the global manager;global_manager_port
– the port of the REST web service exposed by the global manager;local_data_directory
– the directory used by the data collector to store the data on the resource usage by the VMs running on the host (the default value is/var/lib/neat
);local_manager_interval
– the time interval between subsequent invocations of the local manager in seconds;data_collector_interval
– the time interval between subsequent invocations of the data collector in seconds;data_collector_data_length
– the number of the latest data values stored locally by the data collector and passed to the underload / overload detection and VM placement algorithms;compute_user
– the user name for connecting to the compute hosts to switch them into the sleep mode;compute_password
– the password of the user account used for connecting to the compute hosts to switch them into the sleep mode;sleep_command
– a shell command used to switch a host into the sleep mode, thecompute_user
must have permissions to execute this command (the default value ispm-suspend
);algorithm_underload_detection
– the fully qualified name of a Python function to use as an underload detection algorithm;algorithm_overload_detection
– the fully qualified name of a Python function to use as an overload detection algorithm;algorithm_vm_selection
– the fully qualified name of a Python function to use as a VM selection algorithm;algorithm_vm_placement
– the fully qualified name of a Python function to use as a VM placement algorithm.
This section describes a plan of how the components described above are going to be implemented.
The following third party libraries are planned to be used to implement the required components:
- distribute – a library for working with Python module distributions, released under the Python Software Foundation License.
- pyqcy – a QuickCheck-like testing framework for Python, released under the FreeBSD License.
- mocktest – a mocking library for Python, released under the LGPL License.
- PyContracts – a Python library for Design by Contract (DbC), released under the GNU Lesser General Public License.
- SQLAlchemy – a Python SQL toolkit and Object Relational Mapper (used by the core OpenStack service), released under the MIT License.
- Bottle – a micro web-framework for Python, authentication using the same credentials used to authenticate in the Nova API, released under the MIT License.
- Requests – a Python HTTP client library, released under the ISC License.
- python-novaclient – a Python Nova API client implementation, released under the Apache 2.0 License.
- Sphinx – a documentation generator for Python, released under the BSD License.
The global manager component will provide a REST web service implemented using the Bottle framework. The authentication is going to be done using the admin credentials specified in the configuration file. Upon receiving a request from a local manager, the following steps will be performed:
- Parse the
vm_uuids
parameter and transform it into a list of UUIDs of the VMs to migrate. - Call the Nova API to obtain the current placement of VMs on the hosts.
- Call the function specified in the
algorithm_vm_placement
configuration option and pass the UUIDs of the VMs to migrate and the current VM placement as arguments. - Call the Nova API to migrate the VMs according to the placement
determined by the
algorithm_vm_placement
algorithm.
When a host needs to be switched to the sleep mode, the global manager
will use the account credentials from the compute_user
and
compute_password
configuration options to open an SSH connection
with the target host and then invoke the command specified in the
sleep_command
, which defaults to pm-suspend
.
When a host needs to be re-activated from the sleep mode, the global
manager will leverage the Wake-on-LAN technology and send a magic packet
to the target host using the ether-wake
program and passing the
corresponding MAC address as an argument. The mapping between the IP
addresses of the hosts and their MAC addresses is initialized in the
beginning of the global manager’s execution.
The local manager will be implemented as a Linux daemon running in the
background and every local_manager_interval
seconds checking whether
some VMs should be migrated from the host. Every time interval, the
local manager performs the following steps:
- Read the data on resource usage by the VMs running on the host from
the
<local_data_directory>/vm
directory. - Call the function specified in the
algorithm_underload_detection
configuration option and pass the data on the resource usage by the VMs, as well as the frequency of the CPU as arguments. - If the host is underloaded, send a request to the REST API of the
global manager and pass a list of the UUIDs of all the VMs currently
running on the host in the
vm_uuids
parameter, as well as thereason
for migration as being 0. - If the host is not underloaded, call the function specified in the
algorithm_overload_detection
configuration option and pass the data on the resource usage by the VMs, as well as the frequency of the host’s CPU as arguments. - If the host is overloaded, call the function specified in the
algorithm_vm_selection
configuration option and pass the data on the resource usage by the VMs, as well as the frequency of the host’s CPU as arguments - If the host is overloaded, send a request to the REST API of the
global manager and pass a list of the UUIDs of the VMs selected by
the VM selection algorithm in the
vm_uuids
parameter, as well as thereason
for migration as being 1. - Schedule the next execution after
local_manager_interval
seconds.
The data collector will be implemented as a Linux daemon running in the
background and collecting data on the resource usage by VMs every
data_collector_interval
seconds. When the data collection phase is
invoked, the component performs the following steps:
- Read the names of the files from the
<local_data_directory>/vm
directory to determine the list of VMs running on the host at the last data collection. - Call the Nova API to obtain the list of VMs that are currently active on the host.
- Compare the old and new lists of VMs and determine the newly added or removed VMs.
- Delete the files from the
<local_data_directory>/vm
directory corresponding to the VMs that have been removed from the host. - Fetch the latest
data_collector_data_length
data values from the central database for each newly added VM using the database connection information specified in thesql_connection
option and save the data in the<local_data_directory>/vm
directory. - Call the Libvirt API to obtain the CPU time for each VM active on the host.
- Transform the data obtained from the Libvirt API into the average MHz according to the frequency of the host’s CPU and time interval from the previous data collection.
- Store the converted data in the
<local_data_directory>/vm
directory in separate files for each VM, and submit the data to the central database. - Schedule the next execution after
data_collector_interval
seconds.
This need not be added or completed until the specification is nearing beta.
This should highlight any issues that should be addressed in further specifications, and not problems with the specification itself; since any specification with problems cannot be approved.
Use this section to take notes during the BoF; if you keep it in the approved spec, use it for summarising what was discussed and note any options that were rejected.
[1] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers,” Concurrency and Computation: Practice and Experience (CCPE), vol. 24, pp. 1397–1420, 2012.
[2] A. Beloglazov and R. Buyya, “Managing Overloaded Hosts for Dynamic Consolidation of Virtual Machines in Cloud Data Centers Under Quality of Service Constraints,” IEEE Transactions on Parallel and Distributed Systems (TPDS), 2012 (in press, accepted on August 2, 2012).
[3] J. Koomey, Growth in data center electricity use 2005 to 2010. Oakland, CA: Analytics Press, 2011.
[4] Gartner Inc., Gartner estimates ICT industry accounts for 2 percent of global CO2 emissions. Gartner Press Release (April 2007).
[5] R. Nathuji and K. Schwan, “VirtualPower: Coordinated power management in virtualized enterprise systems,” ACM SIGOPS Operating Systems Review, vol. 41, pp. 265–278, 2007.
[6] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and migration cost aware application placement in virtualized systems,” in Proc. of the 9th ACM/IFIP/USENIX Intl. Conf. on Middleware, 2008, pp. 243–264.
[7] X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser, and others, “1000 Islands: Integrated capacity and workload management for the next generation data center,” in Proc. of the 5th Intl. Conf. on Autonomic Computing (ICAC), 2008, pp. 172–181.
[8] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi, and A. Kemper, “An integrated approach to resource pool management: Policies, efficiency and quality metrics,” in Proc. of the 38th IEEE Intl. Conf. on Dependable Systems and Networks (DSN), 2008, pp. 326–335.
[9] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Resource pool management: Reactive versus proactive or lets be friends,” Computer Networks, vol. 53, pp. 2905–2922, 2009.
[10] VMware Inc., “VMware Distributed Power Management Concepts and Use,” Information Guide, 2010.
[11] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu, “Mistral: Dynamically Managing Power, Performance, and Adaptation Cost in Cloud Infrastructures,” in Proc. of the 30th Intl. Conf. on Distributed Computing Systems (ICDCS), 2010, pp. 62–73.
[12] W. Zheng, R. Bianchini, G. J. Janakiraman, J. R. Santos, and Y. Turner, “JustRunIt: Experiment-based management of virtualized data centers,” in Proc. of the 2009 USENIX Annual Technical Conf., 2009, pp. 18–33.
[13] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan, and K. Schwan, “vManage: Loosely coupled platform and virtualization management in data centers,” in Proc. of the 6th Intl. Conf. on Autonomic Computing (ICAC), 2009, pp. 127–136.
[14] B. Guenter, N. Jain, and C. Williams, “Managing Cost, Performance, and Reliability Tradeoffs for Energy-Aware Server Provisioning,” in Proc. of the 30st Annual IEEE Intl. Conf. on Computer Communications (INFOCOM), 2011, pp. 1332–1340.
[15] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual machines for managing SLA violations,” in Proc. of the 10th IFIP/IEEE Intl. Symp. on Integrated Network Management (IM), 2007, pp. 119–128.
[16] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya, “A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing Systems,” Advances in Computers, M. Zelkowitz (ed.), vol. 82, pp. 47–111, 2011.
[17] A. Beloglazov, S. F. Piraghaj, M. Alrokayan, and R. Buyya, “Deploying OpenStack on CentOS Using the KVM Hypervisor and GlusterFS Distributed File System,” Technical Report CLOUDS-TR-2012-3, Cloud Computing and Distributed Systems Laboratory, The University of Melbourne, Aug. 2012.