forked from intel/android-iio-sensors-hal
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompass-calibration.c
548 lines (437 loc) · 17.5 KB
/
compass-calibration.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*
// Copyright (c) 2015 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include <math.h>
#include <hardware/sensors.h>
#include <stdio.h>
#include <utils/Log.h>
#include "calibration.h"
#include "matrix-ops.h"
#include "description.h"
/* Compass defines */
#define COMPASS_CALIBRATION_PATH "/data/compass.conf"
#define EPSILON 0.000000001
#define MAGNETIC_LOW 960 /* 31 micro tesla squared */
#define CAL_STEPS 5
#define CAL_VERSION 1.0
/* We'll have multiple calibration levels so that we can provide an estimation as fast as possible */
static const float min_diffs [CAL_STEPS] = {0.2, 0.25, 0.4, 0.6, 1.0};
static const float max_sqr_errs [CAL_STEPS] = {10.0, 10.0, 8.0, 5.0, 3.5};
static const unsigned int lookback_counts [CAL_STEPS] = {2, 3, 4, 5, 6 };
/* Reset calibration algorithm */
static void reset_sample (compass_cal_t* data)
{
int i,j;
data->sample_count = 0;
for (i = 0; i < MAGN_DS_SIZE; i++)
for (j=0; j < 3; j++)
data->sample[i][j] = 0;
data->average[0] = data->average[1] = data->average[2] = 0;
}
static double calc_square_err (compass_cal_t* data)
{
double err = 0;
double raw[3][1], result[3][1], mat_diff[3][1];
int i;
float stdev[3] = {0,0,0};
double diff;
for (i = 0; i < MAGN_DS_SIZE; i++) {
raw[0][0] = data->sample[i][0];
raw[1][0] = data->sample[i][1];
raw[2][0] = data->sample[i][2];
stdev[0] += (raw[0][0] - data->average[0]) * (raw[0][0] - data->average[0]);
stdev[1] += (raw[1][0] - data->average[1]) * (raw[1][0] - data->average[1]);
stdev[2] += (raw[2][0] - data->average[2]) * (raw[2][0] - data->average[2]);
substract (3, 1, raw, data->offset, mat_diff);
multiply(3, 3, 1, data->w_invert, mat_diff, result);
diff = sqrt(result[0][0] * result[0][0] + result[1][0] * result[1][0] + result[2][0] * result[2][0]) - data->bfield;
err += diff * diff;
}
stdev[0] = sqrt(stdev[0] / MAGN_DS_SIZE);
stdev[1] = sqrt(stdev[1] / MAGN_DS_SIZE);
stdev[2] = sqrt(stdev[2] / MAGN_DS_SIZE);
/* A sanity check - if we have too little variation for an axis it's best to reject the calibration than risking a wrong calibration */
if (stdev[0] <= 1 || stdev[1] <= 1 || stdev[2] <= 1)
return max_sqr_errs[0];
err /= MAGN_DS_SIZE;
return err;
}
/* Given an real symmetric 3x3 matrix A, compute the eigenvalues */
static void compute_eigenvalues (double mat[3][3], double* eig1, double* eig2, double* eig3)
{
double p = mat[0][1] * mat[0][1] + mat[0][2] * mat[0][2] + mat[1][2] * mat[1][2];
if (p < EPSILON) {
*eig1 = mat[0][0];
*eig2 = mat[1][1];
*eig3 = mat[2][2];
return;
}
double q = (mat[0][0] + mat[1][1] + mat[2][2]) / 3;
double temp1 = mat[0][0] - q;
double temp2 = mat[1][1] - q;
double temp3 = mat[2][2] - q;
p = temp1 * temp1 + temp2 * temp2 + temp3 * temp3 + 2 * p;
p = sqrt(p / 6);
double mat2[3][3];
assign(3, 3, mat, mat2);
mat2[0][0] -= q;
mat2[1][1] -= q;
mat2[2][2] -= q;
multiply_scalar_inplace(3, 3, mat2, 1/p);
double r = (mat2[0][0] * mat2[1][1] * mat2[2][2] + mat2[0][1] * mat2[1][2] * mat2[2][0]
+ mat2[0][2] * mat2[1][0] * mat2[2][1] - mat2[0][2] * mat2[1][1] * mat2[2][0]
- mat2[0][0] * mat2[1][2] * mat2[2][1] - mat2[0][1] * mat2[1][0] * mat2[2][2]) / 2;
double phi;
if (r <= -1.0)
phi = M_PI/3;
else if (r >= 1.0)
phi = 0;
else
phi = acos(r) / 3;
*eig3 = q + 2 * p * cos(phi);
*eig1 = q + 2 * p * cos(phi + 2 * M_PI / 3);
*eig2 = 3 * q - *eig1 - *eig3;
}
static void calc_evector (double mat[3][3], double eig, double vec[3][1])
{
double h[3][3];
double x_tmp[2][2];
assign(3, 3, mat, h);
h[0][0] -= eig;
h[1][1] -= eig;
h[2][2] -= eig;
double x[2][2];
x[0][0] = h[1][1];
x[0][1] = h[1][2];
x[1][0] = h[2][1];
x[1][1] = h[2][2];
invert(2, x, x_tmp);
assign(2, 2, x_tmp, x);
double temp1 = x[0][0] * (-h[1][0]) + x[0][1] * (-h[2][0]);
double temp2 = x[1][0] * (-h[1][0]) + x[1][1] * (-h[2][0]);
double norm = sqrt(1 + temp1 * temp1 + temp2 * temp2);
vec[0][0] = 1.0 / norm;
vec[1][0] = temp1 / norm;
vec[2][0] = temp2 / norm;
}
static int ellipsoid_fit (mat_input_t m, double offset[3][1], double w_invert[3][3], double* bfield)
{
int i;
double h[MAGN_DS_SIZE][9];
double w[MAGN_DS_SIZE][1];
double h_trans[9][MAGN_DS_SIZE];
double p_temp1[9][9];
double p_temp2[9][MAGN_DS_SIZE];
double temp1[3][3], temp[3][3];
double temp1_inv[3][3];
double temp2[3][1];
double result[9][9];
double p[9][1];
double a[3][3], sqrt_evals[3][3], evecs[3][3], evecs_trans[3][3];
double evec1[3][1], evec2[3][1], evec3[3][1];
for (i = 0; i < MAGN_DS_SIZE; i++) {
w[i][0] = m[i][0] * m[i][0];
h[i][0] = m[i][0];
h[i][1] = m[i][1];
h[i][2] = m[i][2];
h[i][3] = -1 * m[i][0] * m[i][1];
h[i][4] = -1 * m[i][0] * m[i][2];
h[i][5] = -1 * m[i][1] * m[i][2];
h[i][6] = -1 * m[i][1] * m[i][1];
h[i][7] = -1 * m[i][2] * m[i][2];
h[i][8] = 1;
}
transpose (MAGN_DS_SIZE, 9, h, h_trans);
multiply (9, MAGN_DS_SIZE, 9, h_trans, h, result);
invert (9, result, p_temp1);
multiply (9, 9, MAGN_DS_SIZE, p_temp1, h_trans, p_temp2);
multiply (9, MAGN_DS_SIZE, 1, p_temp2, w, p);
temp1[0][0] = 2;
temp1[0][1] = p[3][0];
temp1[0][2] = p[4][0];
temp1[1][0] = p[3][0];
temp1[1][1] = 2 * p[6][0];
temp1[1][2] = p[5][0];
temp1[2][0] = p[4][0];
temp1[2][1] = p[5][0];
temp1[2][2] = 2 * p[7][0];
temp2[0][0] = p[0][0];
temp2[1][0] = p[1][0];
temp2[2][0] = p[2][0];
invert(3, temp1, temp1_inv);
multiply(3, 3, 1, temp1_inv, temp2, offset);
double off_x = offset[0][0];
double off_y = offset[1][0];
double off_z = offset[2][0];
a[0][0] = 1.0 / (p[8][0] + off_x * off_x + p[6][0] * off_y * off_y
+ p[7][0] * off_z * off_z + p[3][0] * off_x * off_y
+ p[4][0] * off_x * off_z + p[5][0] * off_y * off_z);
a[0][1] = p[3][0] * a[0][0] / 2;
a[0][2] = p[4][0] * a[0][0] / 2;
a[1][2] = p[5][0] * a[0][0] / 2;
a[1][1] = p[6][0] * a[0][0];
a[2][2] = p[7][0] * a[0][0];
a[2][1] = a[1][2];
a[1][0] = a[0][1];
a[2][0] = a[0][2];
double eig1 = 0, eig2 = 0, eig3 = 0;
compute_eigenvalues(a, &eig1, &eig2, &eig3);
if (eig1 <=0 || eig2 <= 0 || eig3 <= 0)
return 0;
sqrt_evals[0][0] = sqrt(eig1);
sqrt_evals[1][0] = 0;
sqrt_evals[2][0] = 0;
sqrt_evals[0][1] = 0;
sqrt_evals[1][1] = sqrt(eig2);
sqrt_evals[2][1] = 0;
sqrt_evals[0][2] = 0;
sqrt_evals[1][2] = 0;
sqrt_evals[2][2] = sqrt(eig3);
calc_evector(a, eig1, evec1);
calc_evector(a, eig2, evec2);
calc_evector(a, eig3, evec3);
evecs[0][0] = evec1[0][0];
evecs[1][0] = evec1[1][0];
evecs[2][0] = evec1[2][0];
evecs[0][1] = evec2[0][0];
evecs[1][1] = evec2[1][0];
evecs[2][1] = evec2[2][0];
evecs[0][2] = evec3[0][0];
evecs[1][2] = evec3[1][0];
evecs[2][2] = evec3[2][0];
multiply (3, 3, 3, evecs, sqrt_evals, temp1);
transpose(3, 3, evecs, evecs_trans);
multiply (3, 3, 3, temp1, evecs_trans, temp);
transpose (3, 3, temp, w_invert);
*bfield = pow(sqrt(1/eig1) * sqrt(1/eig2) * sqrt(1/eig3), 1.0/3.0);
if (*bfield < 0)
return 0;
multiply_scalar_inplace(3, 3, w_invert, *bfield);
return 1;
}
static void compass_cal_init (FILE* data_file, sensor_info_t* info)
{
compass_cal_t* cal_data = (compass_cal_t*) info->cal_data;
int cal_steps = (info->max_cal_level && info->max_cal_level <= CAL_STEPS) ? info->max_cal_level : CAL_STEPS;
float version;
if (cal_data == NULL)
return;
int data_count = 15;
reset_sample(cal_data);
if (!info->cal_level && data_file != NULL) {
int ret = fscanf(data_file, "%f %d %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",
&version, &info->cal_level,
&cal_data->offset[0][0], &cal_data->offset[1][0], &cal_data->offset[2][0],
&cal_data->w_invert[0][0], &cal_data->w_invert[0][1], &cal_data->w_invert[0][2],
&cal_data->w_invert[1][0], &cal_data->w_invert[1][1], &cal_data->w_invert[1][2],
&cal_data->w_invert[2][0], &cal_data->w_invert[2][1], &cal_data->w_invert[2][2],
&cal_data->bfield);
if (ret != data_count || info->cal_level >= cal_steps || version != CAL_VERSION)
info->cal_level = 0;
}
if (info->cal_level) {
ALOGV("CompassCalibration: load old data, caldata: %f %f %f %f %f %f %f %f %f %f %f %f %f",
cal_data->offset[0][0], cal_data->offset[1][0], cal_data->offset[2][0],
cal_data->w_invert[0][0], cal_data->w_invert[0][1], cal_data->w_invert[0][2], cal_data->w_invert[1][0],
cal_data->w_invert[1][1], cal_data->w_invert[1][2], cal_data->w_invert[2][0], cal_data->w_invert[2][1],
cal_data->w_invert[2][2], cal_data->bfield);
} else {
cal_data->offset[0][0] = 0;
cal_data->offset[1][0] = 0;
cal_data->offset[2][0] = 0;
cal_data->w_invert[0][0] = 1;
cal_data->w_invert[1][0] = 0;
cal_data->w_invert[2][0] = 0;
cal_data->w_invert[0][1] = 0;
cal_data->w_invert[1][1] = 1;
cal_data->w_invert[2][1] = 0;
cal_data->w_invert[0][2] = 0;
cal_data->w_invert[1][2] = 0;
cal_data->w_invert[2][2] = 1;
cal_data->bfield = 0;
}
}
static void compass_store_result (FILE* data_file, sensor_info_t* info)
{
compass_cal_t* cal_data = (compass_cal_t*) info->cal_data;
if (data_file == NULL || cal_data == NULL)
return;
int ret = fprintf(data_file, "%f %d %f %f %f %f %f %f %f %f %f %f %f %f %f\n",
CAL_VERSION, info->cal_level,
cal_data->offset[0][0], cal_data->offset[1][0], cal_data->offset[2][0],
cal_data->w_invert[0][0], cal_data->w_invert[0][1], cal_data->w_invert[0][2],
cal_data->w_invert[1][0], cal_data->w_invert[1][1], cal_data->w_invert[1][2],
cal_data->w_invert[2][0], cal_data->w_invert[2][1], cal_data->w_invert[2][2],
cal_data->bfield);
if (ret < 0)
ALOGE ("Compass calibration - store data failed!");
}
static int compass_collect (sensors_event_t* event, sensor_info_t* info)
{
float data[3] = {event->magnetic.x, event->magnetic.y, event->magnetic.z};
unsigned int index,j;
unsigned int lookback_count;
float min_diff;
compass_cal_t* cal_data = (compass_cal_t*) info->cal_data;
if (cal_data == NULL)
return -1;
/* Discard the point if not valid */
if (data[0] == 0 || data[1] == 0 || data[2] == 0)
return -1;
lookback_count = lookback_counts[info->cal_level];
min_diff = min_diffs[info->cal_level];
/* For the current point to be accepted, each x/y/z value must be different enough to the last several collected points */
if (cal_data->sample_count > 0 && cal_data->sample_count < MAGN_DS_SIZE) {
unsigned int lookback = lookback_count < cal_data->sample_count ? lookback_count : cal_data->sample_count;
for (index = 0; index < lookback; index++)
for (j = 0; j < 3; j++)
if (fabsf(data[j] - cal_data->sample[cal_data->sample_count-1-index][j]) < min_diff) {
ALOGV("CompassCalibration:point reject: [%f,%f,%f], selected_count=%d", data[0], data[1], data[2], cal_data->sample_count);
return 0;
}
}
if (cal_data->sample_count < MAGN_DS_SIZE) {
memcpy(cal_data->sample[cal_data->sample_count], data, sizeof(float) * 3);
cal_data->sample_count++;
cal_data->average[0] += data[0];
cal_data->average[1] += data[1];
cal_data->average[2] += data[2];
ALOGV("CompassCalibration:point collected [%f,%f,%f], selected_count=%d", (double)data[0], (double)data[1], (double)data[2], cal_data->sample_count);
}
return 1;
}
static void scale_event (sensors_event_t* event)
{
float sqr_norm = 0;
float sanity_norm = 0;
float scale = 1;
sqr_norm = (event->magnetic.x * event->magnetic.x +
event->magnetic.y * event->magnetic.y +
event->magnetic.z * event->magnetic.z);
if (sqr_norm < MAGNETIC_LOW)
sanity_norm = MAGNETIC_LOW;
if (sanity_norm && sqr_norm) {
scale = sanity_norm / sqr_norm;
scale = sqrt(scale);
event->magnetic.x = event->magnetic.x * scale;
event->magnetic.y = event->magnetic.y * scale;
event->magnetic.z = event->magnetic.z * scale;
}
}
static void compass_compute_cal (sensors_event_t* event, sensor_info_t* info)
{
compass_cal_t* cal_data = (compass_cal_t*) info->cal_data;
double result[3][1], raw[3][1], diff[3][1];
if (!info->cal_level || cal_data == NULL)
return;
raw[0][0] = event->magnetic.x;
raw[1][0] = event->magnetic.y;
raw[2][0] = event->magnetic.z;
substract(3, 1, raw, cal_data->offset, diff);
multiply (3, 3, 1, cal_data->w_invert, diff, result);
event->magnetic.x = event->data[0] = result[0][0];
event->magnetic.y = event->data[1] = result[1][0];
event->magnetic.z = event->data[2] = result[2][0];
scale_event(event);
}
static int compass_ready (sensor_info_t* info)
{
mat_input_t mat;
int i;
float max_sqr_err;
compass_cal_t* cal_data = (compass_cal_t*) info->cal_data;
compass_cal_t new_cal_data;
/*
* Some sensors take unrealistically long to calibrate at higher levels. We'll use a max_cal_level if we have such a property setup,
* or go with the default settings if not.
*/
int cal_steps = (info->max_cal_level && info->max_cal_level <= CAL_STEPS) ? info->max_cal_level : CAL_STEPS;
if (cal_data->sample_count < MAGN_DS_SIZE)
return info->cal_level;
max_sqr_err = max_sqr_errs[info->cal_level];
/* Enough points have been collected, do the ellipsoid calibration */
/* Compute average per axis */
cal_data->average[0] /= MAGN_DS_SIZE;
cal_data->average[1] /= MAGN_DS_SIZE;
cal_data->average[2] /= MAGN_DS_SIZE;
for (i = 0; i < MAGN_DS_SIZE; i++) {
mat[i][0] = cal_data->sample[i][0];
mat[i][1] = cal_data->sample[i][1];
mat[i][2] = cal_data->sample[i][2];
}
/* Check if result is good. The sample data must remain the same */
new_cal_data = *cal_data;
if (ellipsoid_fit(mat, new_cal_data.offset, new_cal_data.w_invert, &new_cal_data.bfield)) {
double new_err = calc_square_err (&new_cal_data);
ALOGI("new err is %f, max sqr err id %f", new_err,max_sqr_err);
if (new_err < max_sqr_err) {
double err = calc_square_err(cal_data);
if (new_err < err) {
/* New cal data is better, so we switch to the new */
memcpy(cal_data->offset, new_cal_data.offset, sizeof(cal_data->offset));
memcpy(cal_data->w_invert, new_cal_data.w_invert, sizeof(cal_data->w_invert));
cal_data->bfield = new_cal_data.bfield;
if (info->cal_level < (cal_steps - 1))
info->cal_level++;
ALOGV("CompassCalibration: ready check success, caldata: %f %f %f %f %f %f %f %f %f %f %f %f %f, err %f",
cal_data->offset[0][0], cal_data->offset[1][0], cal_data->offset[2][0], cal_data->w_invert[0][0],
cal_data->w_invert[0][1], cal_data->w_invert[0][2], cal_data->w_invert[1][0], cal_data->w_invert[1][1],
cal_data->w_invert[1][2], cal_data->w_invert[2][0], cal_data->w_invert[2][1], cal_data->w_invert[2][2],
cal_data->bfield, new_err);
}
}
}
reset_sample(cal_data);
return info->cal_level;
}
void calibrate_compass (int s, sensors_event_t* event)
{
int cal_level;
/* Calibration is continuous */
compass_collect (event, &sensor[s]);
cal_level = compass_ready(&sensor[s]);
switch (cal_level) {
case 0:
scale_event(event);
event->magnetic.status = SENSOR_STATUS_UNRELIABLE;
break;
case 1:
compass_compute_cal (event, &sensor[s]);
event->magnetic.status = SENSOR_STATUS_ACCURACY_LOW;
break;
case 2:
compass_compute_cal (event, &sensor[s]);
event->magnetic.status = SENSOR_STATUS_ACCURACY_MEDIUM;
break;
default:
compass_compute_cal (event, &sensor[s]);
event->magnetic.status = SENSOR_STATUS_ACCURACY_HIGH;
break;
}
}
void compass_read_data (int s)
{
FILE* data_file = fopen (COMPASS_CALIBRATION_PATH, "r");
compass_cal_init(data_file, &sensor[s]);
if (data_file)
fclose(data_file);
}
void compass_store_data (int s)
{
FILE* data_file = fopen (COMPASS_CALIBRATION_PATH, "w");
compass_store_result(data_file, &sensor[s]);
if (data_file)
fclose(data_file);
}