forked from Xilinx/kria-dashboard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
564 lines (499 loc) · 17.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
# Copyright 2021 Xilinx Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from bokeh.plotting import figure, curdoc
from bokeh.layouts import layout, row, column
from bokeh.models.widgets import Tabs, Panel
from bokeh.models import (
ColumnDataSource,
DataTable,
TableColumn,
)
from bokeh.models import Button, Div, Range1d
from bokeh.models import HoverTool
from bokeh.models import TextInput
from bokeh.models import Div
from bokeh.driving import linear
from collections import deque
from xlnx_platformstats import xlnx_platformstats
xlnx_platformstats.init()
bg_color = "#15191C"
text_color = "#E0E0E0"
##################################################
##### Platform Stat Tab ##########################
##################################################
sample_size = 60
sample_size_actual = 60
interval = 1
x = deque([0] * sample_size)
color_list = [
"darkseagreen",
"steelblue",
"indianred",
"chocolate",
"mediumpurple",
"rosybrown",
"gold",
"mediumaquamarine",
]
def clear_min_max():
max_volt[:] = [0, 0, 0, 0, 0, 0, 0, 0, 0]
max_temp[:] = [0, 0, 0]
min_volt[:] = [7000, 7000, 7000, 7000, 7000, 7000, 7000, 7000, 7000]
min_temp[:] = [200, 200, 200]
global average_cpu, average_cpu_sample_size
average_cpu = 0
average_cpu_sample_size = 0
cpu_labels = [
"A-53_Core_0",
"A-53_Core_1",
"A-53_Core_2",
"A-53_Core_3",
]
cpu_data = {
"A-53_Core_0": deque([0.0] * sample_size),
"A-53_Core_1": deque([0.0] * sample_size),
"A-53_Core_2": deque([0.0] * sample_size),
"A-53_Core_3": deque([0.0] * sample_size),
}
volt_labels = [
"VCC_PSPLL",
"PL_VCCINT",
"VOLT_DDRS",
"VCC_PSINTFP",
"VCC_PS_FPD",
"PS_IO_BANK_500",
"VCC_PS_GTR",
"VTT_PS_GTR",
"Total_Volt",
]
volt_data = {
"VCC_PSPLL": deque([0] * sample_size),
"PL_VCCINT": deque([0] * sample_size),
"VOLT_DDRS": deque([0] * sample_size),
"VCC_PSINTFP": deque([0] * sample_size),
"VCC_PS_FPD": deque([0] * sample_size),
"PS_IO_BANK_500": deque([0] * sample_size),
"VCC_PS_GTR": deque([0] * sample_size),
"VTT_PS_GTR": deque([0] * sample_size),
"Total_Volt": deque([0] * sample_size),
}
temp_labels = [
"LPD_TEMP",
"FPD_TEMP",
"PL_TEMP",
]
temp_data = {
"LPD_TEMP": deque([0.0] * sample_size),
"FPD_TEMP": deque([0.0] * sample_size),
"PL_TEMP": deque([0.0] * sample_size),
}
# note that if a queue is not getting appended every sample, remove it from data structure, or
# popping the queue when updating sample size will not work!
mem_labels = [
# "MemTotal",
"MemFree",
# "MemAvailable",
# "SwapTotal",
# "SwapFree",
# "CmaTotal",
# "CmaFree",
]
mem_data = {
# "MemTotal": deque([0] * sample_size),
"MemFree": deque([0] * sample_size),
# "MemAvailable": deque([0] * sample_size),
# "SwapTotal": deque([0] * sample_size),
# "SwapFree": deque([0] * sample_size),
# "CmaTotal": deque([0] * sample_size),
# "CmaFree": deque([0] * sample_size),
}
current_data = deque([0] * sample_size)
power_data = deque([0] * sample_size)
# title
title1 = Div(
text="""<h1 style="color :"""
+ text_color
+ """; text-align :center">Kria™ SOM: Hardware Platform Statistics</h1>""",
width=550,
)
# average cpu display
average_cpu = 0.0
average_cpu_sample_size = 0
average_cpu_display = Div(text=str(average_cpu), width=600)
# CPU frequency display
cpu_freq_text = """<h3 style="color :""" + text_color + """;">CPU Frequencies </h3>"""
cpu_freq = [0, 0, 0, 0]
cpu_freq_display = Div(text=cpu_freq_text, width=400)
# CPU line plot
cpu_plot = figure(plot_width=800, plot_height=300, title="CPU Utilization %")
cpu_ds = [0, 0, 0, 0]
for i in range(len(cpu_labels)):
cpu_ds[i] = (
cpu_plot.line(
x,
cpu_data[cpu_labels[i]],
line_width=2,
color=color_list[i],
legend_label=cpu_labels[i],
)
).data_source
cpu_plot.legend.click_policy = "hide"
# current line plot
current_plot = figure(plot_width=500, plot_height=300, title="Total SOM Current in mA")
current_ds = (
current_plot.line(
x, current_data, line_width=2, color=color_list[0], legend_label="Current"
)
).data_source
current_plot.legend.click_policy = "hide"
# power line plot
power_plot = figure(plot_width=500, plot_height=300, title="Total SOM Power in W")
power_ds = (
power_plot.line(
x, power_data, line_width=2, color=color_list[0], legend_label="Power"
)
).data_source
power_plot.legend.click_policy = "hide"
# temperature line plot
temp_plot = figure(plot_width=500, plot_height=300, title="Temperature in Celsius")
temp_ds = [0, 0, 0, 0]
temp_ds[0] = (
temp_plot.line(
x,
temp_data[temp_labels[0]],
line_width=2,
color=color_list[0],
legend_label=temp_labels[0],
)
).data_source
temp_plot.legend.click_policy = "hide"
# table of min/max for temperature
max_temp = [0.0, 0.0, 0.0]
min_temp = [200.0, 200.0, 200.0]
min_max_temp = dict(temp_labels=temp_labels, max_temp=max_temp, min_temp=min_temp)
min_max_temp_source = ColumnDataSource(min_max_temp)
min_max_temp_column = [
TableColumn(field="temp_labels", title="Temperature"),
TableColumn(field="max_temp", title="Max"),
TableColumn(field="min_temp", title="Min"),
]
temp_data_table = DataTable(
source=min_max_temp_source,
columns=min_max_temp_column,
index_position=None,
width=400,
height=200,
background=bg_color,
css_classes=["custom_table"],
)
# table of min/max for voltages
max_volt = [0, 0, 0, 0, 0, 0, 0, 0, 0]
min_volt = [7000, 7000, 7000, 7000, 7000, 7000, 7000, 7000, 7000]
min_max_volt = dict(volt_labels=volt_labels, max_volt=max_volt, min_volt=min_volt)
min_max_volt_source = ColumnDataSource(min_max_volt)
min_max_volt_column = [
TableColumn(field="volt_labels", title="Voltage"),
TableColumn(field="max_volt", title="Max"),
TableColumn(field="min_volt", title="Min"),
]
volt_data_table = DataTable(
source=min_max_volt_source,
columns=min_max_volt_column,
index_position=None,
width=400,
height=200,
background=bg_color,
css_classes=["custom_table"],
)
# memory line plot
mem_plot = figure(plot_width=800, plot_height=300, title="Total Free Memory in kB")
mem_ds = (
mem_plot.line(
x,
mem_data["MemFree"],
line_width=2,
color=color_list[0],
legend_label="MemFree",
)
).data_source
mem_plot.legend.click_policy = "hide"
# memory bar plot
mem_bar_label = ["MemUsed", "SwapUsed", "CMAUsed"]
mem_bar_total = [0, 0, 0]
mem_bar_used = [0, 0, 0]
mem_bar_available = [0, 0, 0]
mem_bar_percent = [0.0, 0.0, 0.0]
mem_bar_dict = dict(
mem_bar_label=mem_bar_label,
mem_bar_total=mem_bar_total,
mem_bar_used=mem_bar_used,
mem_bar_percent=mem_bar_percent,
mem_bar_available=mem_bar_available,
)
mem_bar_source = ColumnDataSource(mem_bar_dict)
mem_plot_hbar = figure(
y_range=mem_bar_label,
x_range=[0, 100],
plot_width=800,
plot_height=300,
title="Memory Usage in %",
)
mem_plot_hbar.xaxis.axis_label = "%Used"
mem_percent_ds = (
mem_plot_hbar.hbar(
y="mem_bar_label",
right="mem_bar_percent",
tags=mem_bar_label,
source=mem_bar_source,
height=0.5,
fill_color="steelblue",
hatch_pattern="vertical_line",
hatch_weight=2,
line_width=0,
)
).data_source
hover = HoverTool(
tooltips=[("Total in kB:", "@mem_bar_total"), ("Used in kB:", "@mem_bar_used")]
)
mem_plot_hbar.add_tools(hover)
# reset button
reset_button = Button(
label="Reset Min/Max and Averages", width=200, button_type="primary"
)
reset_button.on_click(clear_min_max)
# sample interval
def update_interval(attr, old, new):
global interval
interval = max(float(new), 0.5)
global input_interval
input_interval.value = str(interval)
global callback
curdoc().remove_periodic_callback(callback)
callback = curdoc().add_periodic_callback(update, interval * 1000)
input_interval = TextInput(
value=str(interval),
title="input interval in seconds (minimal 0.5s):",
css_classes=["custom_textinput"],
width=100,
)
input_interval.on_change("value", update_interval)
# sample size
def update_sample_size(attr, old, new):
global sample_size, sample_size_actual
new_sample_size = int(new)
if new_sample_size < sample_size_actual:
excess = sample_size_actual - new_sample_size
while excess > 0:
x.popleft()
for j in range(len(cpu_labels)):
cpu_data[cpu_labels[j]].popleft()
for j in range(len(volt_labels)):
volt_data[volt_labels[j]].popleft()
for j in range(len(temp_labels)):
temp_data[temp_labels[j]].popleft()
for j in range(len(mem_labels)):
mem_data[mem_labels[j]].popleft()
excess = excess - 1
sample_size_actual = new_sample_size
sample_size = new_sample_size
input_sample_size = TextInput(
value=str(sample_size),
title="Sample Size:",
css_classes=["custom_textinput"],
width=100,
)
input_sample_size.on_change("value", update_sample_size)
time = 0
# default_data_range = cpu_plot.y_range
cpu_plot.y_range = Range1d(0, 100)
mem_result1 = (
xlnx_platformstats.get_ram_memory_utilization()
) # Returns list [return_val, MemTotal, MemFree, MemAvailable]
mem_plot.y_range = Range1d(0, mem_result1[1]) # get_mem("MemTotal"))
power_plot.y_range = Range1d(0, 6)
current_plot.y_range = Range1d(0, 1000)
temp_plot.y_range = Range1d(0, 100)
# # dynamic scaling:
# def update_scaling(attr, old, new):
# if new == [0]:
# cpu_plot.y_range = default_data_range
# cpu_plot.title.text = "name 1"
# else:
# cpu_plot.y_range = Range1d(0, 50)
# cpu_plot.title.text = "name 2"
#
# checkbox_labels = ["Enable Dynamic Y-axis Scaling"]
# checkbox_group = CheckboxGroup(labels=checkbox_labels, active=[], css_classes=['custom_textinput'],)
# checkbox_group.on_change('active', update_scaling)
@linear()
def update(step):
global time
global sample_size_actual
time = time + interval
if sample_size_actual >= sample_size:
x.popleft()
x.append(time)
read = xlnx_platformstats.get_cpu_utilization()
average_cpu_x = 0
for j in range(len(cpu_labels)):
if sample_size_actual >= sample_size:
cpu_data[cpu_labels[j]].popleft()
cpu_data_read = read[j]
cpu_data[cpu_labels[j]].append(cpu_data_read)
cpu_ds[j].trigger("data", x, cpu_data[cpu_labels[j]])
average_cpu_x = average_cpu_x + cpu_data_read
# average CPU usage
global average_cpu_sample_size, average_cpu
average_cpu = average_cpu * average_cpu_sample_size
average_cpu_sample_size = average_cpu_sample_size + 1
average_cpu = (average_cpu + (average_cpu_x / 4)) / average_cpu_sample_size
text = (
"""<h2 style="color :"""
+ text_color
+ """;">"""
+ " Average CPU utilization over last "
+ str(average_cpu_sample_size)
+ " samples is "
+ str(round(average_cpu, 2))
+ """%</h2>"""
)
average_cpu_display.text = text
# CPU frequency
cpu_freq = []
for j in range(4):
cpu_freq.append(
str(xlnx_platformstats.get_cpu_frequency(j)[1])
) # //Returns list [return_val, cpu_freq]
# cpu_freq.append(open('/sys/devices/system/cpu/cpu' + str(j) + '/cpufreq/cpuinfo_cur_freq', 'r').read())
cpu_freq_display.text = (
cpu_freq_text
+ """<p style="color :"""
+ text_color
+ """;"> CPU0:"""
+ cpu_freq[0]
+ "MHz<br> CPU1:"
+ cpu_freq[1]
+ "MHz<br> CPU2:"
+ cpu_freq[2]
+ "MHz<br> CPU3:"
+ cpu_freq[3]
+ "MHz"
)
volts = []
volts = (
xlnx_platformstats.get_voltages()
) # Returns list [return_val, VCC_PSPLL, PL_VCCINT, VOLT_DDRS, VCC_PSINTFP, VCC_PS _FPD, PS_IO_BANK_500, VCC_PS_GTR, VTT_PS_GTR, total_voltage]
volts.pop(0)
for j in range(len(volt_labels)):
if sample_size_actual >= sample_size:
volt_data[volt_labels[j]].popleft()
volt_read = int(volts[j])
volt_data[volt_labels[j]].append(volt_read)
if (volt_read < min_volt[j]) or (volt_read > max_volt[j]):
min_volt[j] = min(min_volt[j], int(volts[j]))
max_volt[j] = max(max_volt[j], int(volts[j]))
volt_data_table.source.trigger(
"data", volt_data_table.source, volt_data_table.source
)
temperatures = []
temperatures = (
xlnx_platformstats.get_temperatures()
) # Returns list [return_val, LPD_TEMP, FPD_TEMP, PL_TEMP]
temperatures.pop(0)
for j in range(len(temp_labels)):
if sample_size_actual >= sample_size:
temp_data[temp_labels[j]].popleft()
temperature_read = (float(temperatures[j])) / 1000
temp_data[temp_labels[j]].append(temperature_read)
if (temperature_read < min_temp[j]) or (temperature_read > max_temp[j]):
min_temp[j] = min(min_temp[j], temperature_read)
max_temp[j] = max(max_temp[j], temperature_read)
temp_data_table.source.trigger(
"data", temp_data_table.source, temp_data_table.source
)
temp_ds[0].trigger("data", x, temp_data[temp_labels[0]])
ina260_current = xlnx_platformstats.get_current()[
1
] # Returns list [return_val, total_current
if sample_size_actual >= sample_size:
current_data.popleft()
current_data.append(int(ina260_current))
current_ds.trigger("data", x, current_data)
ina260_power = (
xlnx_platformstats.get_power()[1] / 1000000
) # Returns list [return_val, total_power]
if sample_size_actual >= sample_size:
power_data.popleft()
power_data.append(ina260_power)
power_ds.trigger("data", x, power_data)
# Mem line chart
mem_result1 = (
xlnx_platformstats.get_ram_memory_utilization()
) # Returns list [return_val, MemTotal, MemFree, MemAvailable]
mem_result2 = (
xlnx_platformstats.get_swap_memory_utilization()
) # Returns list [return_val, SwapTotal, SwapFree]
mem_result3 = (
xlnx_platformstats.get_cma_utilization()
) # Returns list [return_val, CmaTotal, CmaFree]
mem_num = mem_result1[2] # get_mem("MemFree")
if sample_size_actual >= sample_size:
mem_data["MemFree"].popleft()
mem_data["MemFree"].append(mem_num)
mem_ds.trigger("data", x, mem_data["MemFree"])
# Memory usage Horizontal bar chart
mem_bar_total[0] = mem_result1[1] # get_mem('MemTotal')
mem_bar_available[0] = mem_result1[3] # get_mem('MemAvailable')
mem_bar_used[0] = mem_bar_total[0] - mem_bar_available[0]
mem_bar_percent[0] = 100 * mem_bar_used[0] / max(mem_bar_total[0], 1)
mem_bar_total[1] = mem_result2[1] # get_mem('SwapTotal')
mem_bar_available[1] = mem_result2[2] # get_mem('SwapFree')
mem_bar_used[1] = mem_bar_total[1] - mem_bar_available[1]
mem_bar_percent[1] = 100 * mem_bar_used[1] / max(mem_bar_total[1], 1)
mem_bar_total[2] = mem_result3[1] # get_mem('CmaTotal')
mem_bar_available[2] = mem_result3[2] # get_mem('CmaFree')
mem_bar_used[2] = mem_bar_total[2] - mem_bar_available[2]
mem_bar_percent[2] = 100 * mem_bar_used[2] / max(mem_bar_total[2], 1)
mem_percent_ds.trigger("data", mem_bar_label, mem_bar_percent)
if sample_size_actual < sample_size:
sample_size_actual = sample_size_actual + 1
# margin: Margin-Top, Margin-Right, Margin-Bottom and Margin-Left
user_interface = column(
reset_button,
input_sample_size,
input_interval, # checkbox_group,
background=bg_color,
margin=(50, 50, 50, 100),
)
cpu_freq_block = column(cpu_freq_display, background=bg_color, margin=(0, 0, 0, 100))
layout1 = layout(
column(
row(title1, align="center"),
average_cpu_display,
row(cpu_plot, user_interface, cpu_freq_block, background=bg_color),
row(mem_plot, mem_plot_hbar, background=bg_color),
row(power_plot, current_plot, temp_plot, background=bg_color),
row(volt_data_table, temp_data_table, background=bg_color),
background=bg_color,
)
)
# Add a periodic callback to be run every 1000 milliseconds
callback = curdoc().add_periodic_callback(update, interval * 1000)
##################################################
##### Group Tabs ##########################
##################################################
curdoc().theme = "dark_minimal"
tab1 = Panel(child=layout1, title="Platform Statistic Dashboard")
tabs = Tabs(tabs=[tab1])
curdoc().add_root(tabs)