Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

When i am trying in another dataset i mgetting error can u pls help me in this regard #1

Open
p-suresh-kumar opened this issue Mar 24, 2020 · 0 comments

Comments

@p-suresh-kumar
Copy link

I m attaching error log and screen shot of the dataset where i am getting error when i try to work on the same DNNClassifier

`I0324 15:40:17.339685 812 estimator.py:1145] Calling model_fn.

ValueError Traceback (most recent call last)
in
----> 1 model.train(input_fn = make_input_fn(df_train, num_epochs = 3000))

~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py in train(self, input_fn, hooks, steps, max_steps, saving_listeners)
365
366 saving_listeners = _check_listeners_type(saving_listeners)
--> 367 loss = self._train_model(input_fn, hooks, saving_listeners)
368 logging.info('Loss for final step: %s.', loss)
369 return self

~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py in _train_model(self, input_fn, hooks, saving_listeners)
1156 return self._train_model_distributed(input_fn, hooks, saving_listeners)
1157 else:
-> 1158 return self._train_model_default(input_fn, hooks, saving_listeners)
1159
1160 def _train_model_default(self, input_fn, hooks, saving_listeners):

~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py in _train_model_default(self, input_fn, hooks, saving_listeners)
1186 worker_hooks.extend(input_hooks)
1187 estimator_spec = self._call_model_fn(
-> 1188 features, labels, ModeKeys.TRAIN, self.config)
1189 global_step_tensor = training_util.get_global_step(g)
1190 return self._train_with_estimator_spec(estimator_spec, worker_hooks,

~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py in _call_model_fn(self, features, labels, mode, config)
1144
1145 logging.info('Calling model_fn.')
-> 1146 model_fn_results = self._model_fn(features=features, **kwargs)
1147 logging.info('Done calling model_fn.')
1148

~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\canned\dnn.py in _model_fn(features, labels, mode, config)
810 input_layer_partitioner=input_layer_partitioner,
811 config=config,
--> 812 batch_norm=batch_norm)
813
814 super(DNNClassifier, self).init(

~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\canned\dnn.py in _dnn_model_fn(features, labels, mode, head, hidden_units, feature_columns, optimizer, activation_fn, dropout, input_layer_partitioner, config, use_tpu, batch_norm)
462 input_layer_partitioner=input_layer_partitioner,
463 batch_norm=batch_norm)
--> 464 logits = logit_fn(features=features, mode=mode)
465
466 return _get_dnn_estimator_spec(use_tpu, head, features, labels, mode,

~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\canned\dnn.py in dnn_logit_fn(features, mode)
105 batch_norm,
106 name='dnn')
--> 107 return dnn_model(features, mode)
108
109 return dnn_logit_fn

~\Anaconda3\envs\venv\lib\site-packages\tensorflow\python\keras\engine\base_layer.py in call(self, inputs, *args, **kwargs)
632 outputs = base_layer_utils.mark_as_return(outputs, acd)
633 else:
--> 634 outputs = call_fn(inputs, *args, **kwargs)
635
636 except TypeError as e:

~\Anaconda3\envs\venv\lib\site-packages\tensorflow\python\autograph\impl\api.py in wrapper(*args, **kwargs)
147 except Exception as e: # pylint:disable=broad-except
148 if hasattr(e, 'ag_error_metadata'):
--> 149 raise e.ag_error_metadata.to_exception(type(e))
150 else:
151 raise

ValueError: in converted code:
relative to C:\Users\suresh\Anaconda3\envs\venv\lib:

site-packages\tensorflow_estimator\python\estimator\canned\dnn.py:250 call *
    net = self._input_layer(features)
site-packages\tensorflow\python\keras\engine\base_layer.py:634 __call__
    outputs = call_fn(inputs, *args, **kwargs)
site-packages\tensorflow\python\feature_column\feature_column_v2.py:472 call *
    with ops.name_scope(column.name):
site-packages\tensorflow\python\framework\ops.py:6513 __enter__
    return self._name_scope.__enter__()
contextlib.py:81 __enter__
    return next(self.gen)
site-packages\tensorflow\python\framework\ops.py:4307 name_scope
    raise ValueError("'%s' is not a valid scope name" % name)

ValueError: 'ev(g)' is not a valid scope name

`

dataset

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant