We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I m attaching error log and screen shot of the dataset where i am getting error when i try to work on the same DNNClassifier
ValueError Traceback (most recent call last) in ----> 1 model.train(input_fn = make_input_fn(df_train, num_epochs = 3000))
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py in train(self, input_fn, hooks, steps, max_steps, saving_listeners) 365 366 saving_listeners = _check_listeners_type(saving_listeners) --> 367 loss = self._train_model(input_fn, hooks, saving_listeners) 368 logging.info('Loss for final step: %s.', loss) 369 return self
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py in _train_model(self, input_fn, hooks, saving_listeners) 1156 return self._train_model_distributed(input_fn, hooks, saving_listeners) 1157 else: -> 1158 return self._train_model_default(input_fn, hooks, saving_listeners) 1159 1160 def _train_model_default(self, input_fn, hooks, saving_listeners):
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py in _train_model_default(self, input_fn, hooks, saving_listeners) 1186 worker_hooks.extend(input_hooks) 1187 estimator_spec = self._call_model_fn( -> 1188 features, labels, ModeKeys.TRAIN, self.config) 1189 global_step_tensor = training_util.get_global_step(g) 1190 return self._train_with_estimator_spec(estimator_spec, worker_hooks,
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py in _call_model_fn(self, features, labels, mode, config) 1144 1145 logging.info('Calling model_fn.') -> 1146 model_fn_results = self._model_fn(features=features, **kwargs) 1147 logging.info('Done calling model_fn.') 1148
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\canned\dnn.py in _model_fn(features, labels, mode, config) 810 input_layer_partitioner=input_layer_partitioner, 811 config=config, --> 812 batch_norm=batch_norm) 813 814 super(DNNClassifier, self).init(
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\canned\dnn.py in _dnn_model_fn(features, labels, mode, head, hidden_units, feature_columns, optimizer, activation_fn, dropout, input_layer_partitioner, config, use_tpu, batch_norm) 462 input_layer_partitioner=input_layer_partitioner, 463 batch_norm=batch_norm) --> 464 logits = logit_fn(features=features, mode=mode) 465 466 return _get_dnn_estimator_spec(use_tpu, head, features, labels, mode,
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\canned\dnn.py in dnn_logit_fn(features, mode) 105 batch_norm, 106 name='dnn') --> 107 return dnn_model(features, mode) 108 109 return dnn_logit_fn
~\Anaconda3\envs\venv\lib\site-packages\tensorflow\python\keras\engine\base_layer.py in call(self, inputs, *args, **kwargs) 632 outputs = base_layer_utils.mark_as_return(outputs, acd) 633 else: --> 634 outputs = call_fn(inputs, *args, **kwargs) 635 636 except TypeError as e:
~\Anaconda3\envs\venv\lib\site-packages\tensorflow\python\autograph\impl\api.py in wrapper(*args, **kwargs) 147 except Exception as e: # pylint:disable=broad-except 148 if hasattr(e, 'ag_error_metadata'): --> 149 raise e.ag_error_metadata.to_exception(type(e)) 150 else: 151 raise
ValueError: in converted code: relative to C:\Users\suresh\Anaconda3\envs\venv\lib:
site-packages\tensorflow_estimator\python\estimator\canned\dnn.py:250 call * net = self._input_layer(features) site-packages\tensorflow\python\keras\engine\base_layer.py:634 __call__ outputs = call_fn(inputs, *args, **kwargs) site-packages\tensorflow\python\feature_column\feature_column_v2.py:472 call * with ops.name_scope(column.name): site-packages\tensorflow\python\framework\ops.py:6513 __enter__ return self._name_scope.__enter__() contextlib.py:81 __enter__ return next(self.gen) site-packages\tensorflow\python\framework\ops.py:4307 name_scope raise ValueError("'%s' is not a valid scope name" % name) ValueError: 'ev(g)' is not a valid scope name
`
The text was updated successfully, but these errors were encountered:
No branches or pull requests
I m attaching error log and screen shot of the dataset where i am getting error when i try to work on the same DNNClassifier
`I0324 15:40:17.339685 812 estimator.py:1145] Calling model_fn.
ValueError Traceback (most recent call last)
in
----> 1 model.train(input_fn = make_input_fn(df_train, num_epochs = 3000))
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py in train(self, input_fn, hooks, steps, max_steps, saving_listeners)
365
366 saving_listeners = _check_listeners_type(saving_listeners)
--> 367 loss = self._train_model(input_fn, hooks, saving_listeners)
368 logging.info('Loss for final step: %s.', loss)
369 return self
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py in _train_model(self, input_fn, hooks, saving_listeners)
1156 return self._train_model_distributed(input_fn, hooks, saving_listeners)
1157 else:
-> 1158 return self._train_model_default(input_fn, hooks, saving_listeners)
1159
1160 def _train_model_default(self, input_fn, hooks, saving_listeners):
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py in _train_model_default(self, input_fn, hooks, saving_listeners)
1186 worker_hooks.extend(input_hooks)
1187 estimator_spec = self._call_model_fn(
-> 1188 features, labels, ModeKeys.TRAIN, self.config)
1189 global_step_tensor = training_util.get_global_step(g)
1190 return self._train_with_estimator_spec(estimator_spec, worker_hooks,
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\estimator.py in _call_model_fn(self, features, labels, mode, config)
1144
1145 logging.info('Calling model_fn.')
-> 1146 model_fn_results = self._model_fn(features=features, **kwargs)
1147 logging.info('Done calling model_fn.')
1148
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\canned\dnn.py in _model_fn(features, labels, mode, config)
810 input_layer_partitioner=input_layer_partitioner,
811 config=config,
--> 812 batch_norm=batch_norm)
813
814 super(DNNClassifier, self).init(
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\canned\dnn.py in _dnn_model_fn(features, labels, mode, head, hidden_units, feature_columns, optimizer, activation_fn, dropout, input_layer_partitioner, config, use_tpu, batch_norm)
462 input_layer_partitioner=input_layer_partitioner,
463 batch_norm=batch_norm)
--> 464 logits = logit_fn(features=features, mode=mode)
465
466 return _get_dnn_estimator_spec(use_tpu, head, features, labels, mode,
~\Anaconda3\envs\venv\lib\site-packages\tensorflow_estimator\python\estimator\canned\dnn.py in dnn_logit_fn(features, mode)
105 batch_norm,
106 name='dnn')
--> 107 return dnn_model(features, mode)
108
109 return dnn_logit_fn
~\Anaconda3\envs\venv\lib\site-packages\tensorflow\python\keras\engine\base_layer.py in call(self, inputs, *args, **kwargs)
632 outputs = base_layer_utils.mark_as_return(outputs, acd)
633 else:
--> 634 outputs = call_fn(inputs, *args, **kwargs)
635
636 except TypeError as e:
~\Anaconda3\envs\venv\lib\site-packages\tensorflow\python\autograph\impl\api.py in wrapper(*args, **kwargs)
147 except Exception as e: # pylint:disable=broad-except
148 if hasattr(e, 'ag_error_metadata'):
--> 149 raise e.ag_error_metadata.to_exception(type(e))
150 else:
151 raise
ValueError: in converted code:
relative to C:\Users\suresh\Anaconda3\envs\venv\lib:
`
The text was updated successfully, but these errors were encountered: