-
Notifications
You must be signed in to change notification settings - Fork 20
/
predictor.py
471 lines (417 loc) · 16.1 KB
/
predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import cv2
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
from iPerceive.modeling.detector import build_detection_model
from iPerceive.utils.checkpoint import DetectronCheckpointer
from iPerceive.structures.image_list import to_image_list
from iPerceive.modeling.roi_heads.mask_head.inference import Masker
from iPerceive import layers as L
from iPerceive.utils import cv2_util
class Resize(object):
def __init__(self, min_size, max_size):
self.min_size = min_size
self.max_size = max_size
# modified from torchvision to add support for max size
def get_size(self, image_size):
w, h = image_size
size = self.min_size
max_size = self.max_size
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
return (oh, ow)
def __call__(self, image):
size = self.get_size(image.size)
image = F.resize(image, size)
return image
class COCODemo(object):
# COCO categories for pretty print
CATEGORIES = [
"__background",
"person",
"bicycle",
"car",
"motorcycle",
"airplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"backpack",
"umbrella",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"dining table",
"toilet",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush",
]
def __init__(
self,
cfg,
confidence_threshold=0.7,
show_mask_heatmaps=False,
masks_per_dim=2,
min_image_size=224,
weight_loading = None
):
self.cfg = cfg.clone()
self.model = build_detection_model(cfg)
self.model.eval()
self.device = torch.device(cfg.MODEL.DEVICE)
self.model.to(self.device)
self.min_image_size = min_image_size
save_dir = cfg.OUTPUT_DIR
checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
if weight_loading:
print('Loading weight from {}.'.format(weight_loading))
_ = checkpointer._load_model(torch.load(weight_loading))
self.transforms = self.build_transform()
mask_threshold = -1 if show_mask_heatmaps else 0.5
self.masker = Masker(threshold=mask_threshold, padding=1)
# used to make colors for each class
self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
self.cpu_device = torch.device("cpu")
self.confidence_threshold = confidence_threshold
self.show_mask_heatmaps = show_mask_heatmaps
self.masks_per_dim = masks_per_dim
def build_transform(self):
"""
Creates a basic transformation that was used to train the models
"""
cfg = self.cfg
# we are loading images with OpenCV, so we don't need to convert them
# to BGR, they are already! So all we need to do is to normalize
# by 255 if we want to convert to BGR255 format, or flip the channels
# if we want it to be in RGB in [0-1] range.
if cfg.INPUT.TO_BGR255:
to_bgr_transform = T.Lambda(lambda x: x * 255)
else:
to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])
normalize_transform = T.Normalize(
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
)
min_size = cfg.INPUT.MIN_SIZE_TEST
max_size = cfg.INPUT.MAX_SIZE_TEST
transform = T.Compose(
[
T.ToPILImage(),
Resize(min_size, max_size),
T.ToTensor(),
to_bgr_transform,
normalize_transform,
]
)
return transform
def run_on_opencv_image(self, image):
"""
Arguments:
image (np.ndarray): an image as returned by OpenCV
Returns:
prediction (BoxList): the detected objects. Additional information
of the detection properties can be found in the fields of
the BoxList via `prediction.fields()`
"""
predictions = self.compute_prediction(image)
top_predictions = self.select_top_predictions(predictions)
result = image.copy()
if self.show_mask_heatmaps:
return self.create_mask_montage(result, top_predictions)
result = self.overlay_boxes(result, top_predictions)
if self.cfg.MODEL.MASK_ON:
result = self.overlay_mask(result, top_predictions)
if self.cfg.MODEL.KEYPOINT_ON:
result = self.overlay_keypoints(result, top_predictions)
result = self.overlay_class_names(result, top_predictions)
return result
def compute_prediction(self, original_image):
"""
Arguments:
original_image (np.ndarray): an image as returned by OpenCV
Returns:
prediction (BoxList): the detected objects. Additional information
of the detection properties can be found in the fields of
the BoxList via `prediction.fields()`
"""
# apply pre-processing to image
image = self.transforms(original_image)
# convert to an ImageList, padded so that it is divisible by
# cfg.DATALOADER.SIZE_DIVISIBILITY
image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY)
image_list = image_list.to(self.device)
# compute predictions
with torch.no_grad():
predictions = self.model(image_list)
predictions = [o.to(self.cpu_device) for o in predictions]
# always single image is passed at a time
prediction = predictions[0]
# reshape prediction (a BoxList) into the original image size
height, width = original_image.shape[:-1]
prediction = prediction.resize((width, height))
if prediction.has_field("mask"):
# if we have masks, paste the masks in the right position
# in the image, as defined by the bounding boxes
masks = prediction.get_field("mask")
# always single image is passed at a time
masks = self.masker([masks], [prediction])[0]
prediction.add_field("mask", masks)
return prediction
def select_top_predictions(self, predictions):
"""
Select only predictions which have a `score` > self.confidence_threshold,
and returns the predictions in descending order of score
Arguments:
predictions (BoxList): the result of the computation by the model.
It should contain the field `scores`.
Returns:
prediction (BoxList): the detected objects. Additional information
of the detection properties can be found in the fields of
the BoxList via `prediction.fields()`
"""
scores = predictions.get_field("scores")
keep = torch.nonzero(scores > self.confidence_threshold).squeeze(1)
predictions = predictions[keep]
scores = predictions.get_field("scores")
_, idx = scores.sort(0, descending=True)
return predictions[idx]
def compute_colors_for_labels(self, labels):
"""
Simple function that adds fixed colors depending on the class
"""
colors = labels[:, None] * self.palette
colors = (colors % 255).numpy().astype("uint8")
return colors
def overlay_boxes(self, image, predictions):
"""
Adds the predicted boxes on top of the image
Arguments:
image (np.ndarray): an image as returned by OpenCV
predictions (BoxList): the result of the computation by the model.
It should contain the field `labels`.
"""
labels = predictions.get_field("labels")
boxes = predictions.bbox
colors = self.compute_colors_for_labels(labels).tolist()
for box, color in zip(boxes, colors):
box = box.to(torch.int64)
top_left, bottom_right = box[:2].tolist(), box[2:].tolist()
image = cv2.rectangle(
image, tuple(top_left), tuple(bottom_right), tuple(color), 1
)
return image
def overlay_mask(self, image, predictions):
"""
Adds the instances contours for each predicted object.
Each label has a different color.
Arguments:
image (np.ndarray): an image as returned by OpenCV
predictions (BoxList): the result of the computation by the model.
It should contain the field `mask` and `labels`.
"""
masks = predictions.get_field("mask").numpy()
labels = predictions.get_field("labels")
colors = self.compute_colors_for_labels(labels).tolist()
for mask, color in zip(masks, colors):
thresh = mask[0, :, :, None].astype(np.uint8)
contours, hierarchy = cv2_util.findContours(
thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
image = cv2.drawContours(image, contours, -1, color, 3)
composite = image
return composite
def overlay_keypoints(self, image, predictions):
keypoints = predictions.get_field("keypoints")
kps = keypoints.keypoints
scores = keypoints.get_field("logits")
kps = torch.cat((kps[:, :, 0:2], scores[:, :, None]), dim=2).numpy()
for region in kps:
image = vis_keypoints(image, region.transpose((1, 0)))
return image
def create_mask_montage(self, image, predictions):
"""
Create a montage showing the probability heatmaps for each one one of the
detected objects
Arguments:
image (np.ndarray): an image as returned by OpenCV
predictions (BoxList): the result of the computation by the model.
It should contain the field `mask`.
"""
masks = predictions.get_field("mask")
masks_per_dim = self.masks_per_dim
masks = L.interpolate(
masks.float(), scale_factor=1 / masks_per_dim
).byte()
height, width = masks.shape[-2:]
max_masks = masks_per_dim ** 2
masks = masks[:max_masks]
# handle case where we have less detections than max_masks
if len(masks) < max_masks:
masks_padded = torch.zeros(max_masks, 1, height, width, dtype=torch.uint8)
masks_padded[: len(masks)] = masks
masks = masks_padded
masks = masks.reshape(masks_per_dim, masks_per_dim, height, width)
result = torch.zeros(
(masks_per_dim * height, masks_per_dim * width), dtype=torch.uint8
)
for y in range(masks_per_dim):
start_y = y * height
end_y = (y + 1) * height
for x in range(masks_per_dim):
start_x = x * width
end_x = (x + 1) * width
result[start_y:end_y, start_x:end_x] = masks[y, x]
return cv2.applyColorMap(result.numpy(), cv2.COLORMAP_JET)
def overlay_class_names(self, image, predictions):
"""
Adds detected class names and scores in the positions defined by the
top-left corner of the predicted bounding box
Arguments:
image (np.ndarray): an image as returned by OpenCV
predictions (BoxList): the result of the computation by the model.
It should contain the field `scores` and `labels`.
"""
scores = predictions.get_field("scores").tolist()
labels = predictions.get_field("labels").tolist()
labels = [self.CATEGORIES[i] for i in labels]
boxes = predictions.bbox
template = "{}: {:.2f}"
for box, score, label in zip(boxes, scores, labels):
x, y = box[:2]
s = template.format(label, score)
cv2.putText(
image, s, (x, y), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 255, 255), 1
)
return image
import numpy as np
import matplotlib.pyplot as plt
from iPerceive.structures.keypoint import PersonKeypoints
def vis_keypoints(img, kps, kp_thresh=2, alpha=0.7):
"""Visualizes keypoints (adapted from vis_one_image).
kps has shape (4, #keypoints) where 4 rows are (x, y, logit, prob).
"""
dataset_keypoints = PersonKeypoints.NAMES
kp_lines = PersonKeypoints.CONNECTIONS
# Convert from plt 0-1 RGBA colors to 0-255 BGR colors for opencv.
cmap = plt.get_cmap('rainbow')
colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)]
colors = [(c[2] * 255, c[1] * 255, c[0] * 255) for c in colors]
# Perform the drawing on a copy of the image, to allow for blending.
kp_mask = np.copy(img)
# Draw mid shoulder / mid hip first for better visualization.
mid_shoulder = (
kps[:2, dataset_keypoints.index('right_shoulder')] +
kps[:2, dataset_keypoints.index('left_shoulder')]) / 2.0
sc_mid_shoulder = np.minimum(
kps[2, dataset_keypoints.index('right_shoulder')],
kps[2, dataset_keypoints.index('left_shoulder')])
mid_hip = (
kps[:2, dataset_keypoints.index('right_hip')] +
kps[:2, dataset_keypoints.index('left_hip')]) / 2.0
sc_mid_hip = np.minimum(
kps[2, dataset_keypoints.index('right_hip')],
kps[2, dataset_keypoints.index('left_hip')])
nose_idx = dataset_keypoints.index('nose')
if sc_mid_shoulder > kp_thresh and kps[2, nose_idx] > kp_thresh:
cv2.line(
kp_mask, tuple(mid_shoulder), tuple(kps[:2, nose_idx]),
color=colors[len(kp_lines)], thickness=2, lineType=cv2.LINE_AA)
if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh:
cv2.line(
kp_mask, tuple(mid_shoulder), tuple(mid_hip),
color=colors[len(kp_lines) + 1], thickness=2, lineType=cv2.LINE_AA)
# Draw the keypoints.
for l in range(len(kp_lines)):
i1 = kp_lines[l][0]
i2 = kp_lines[l][1]
p1 = kps[0, i1], kps[1, i1]
p2 = kps[0, i2], kps[1, i2]
if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh:
cv2.line(
kp_mask, p1, p2,
color=colors[l], thickness=2, lineType=cv2.LINE_AA)
if kps[2, i1] > kp_thresh:
cv2.circle(
kp_mask, p1,
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA)
if kps[2, i2] > kp_thresh:
cv2.circle(
kp_mask, p2,
radius=3, color=colors[l], thickness=-1, lineType=cv2.LINE_AA)
# Blend the keypoints.
return cv2.addWeighted(img, 1.0 - alpha, kp_mask, alpha, 0)