diff --git a/Multilayer/Multilayer_Main_code.py b/Multilayer/Multilayer_Main_code.py index b6e1f9a..51df883 100644 --- a/Multilayer/Multilayer_Main_code.py +++ b/Multilayer/Multilayer_Main_code.py @@ -5,16 +5,20 @@ Created on Tue Oct 15 11:31:56 2019 @author: Turing + +This is the main code used at the MULTINETLAB for Multilayer Analysis - +This code can create a Multilayer network object - similar to the ones in Networkx - having as an input a Supra Adjacency Matrix. +For privacy reasons, we used random MST matrices on Github + """ +# reviewed by Eduarda Centeno 20200907 "importing important stuff." -"" import numpy as np import multinetx as mx import networkx as nx import matplotlib.pyplot as plt - import scipy as sio import scipy.io from sklearn import preprocessing @@ -28,29 +32,25 @@ import pyreadstat import pandas as pd -"This main code used at MULTINETLAB for Multilayer Analysis - This code can create a Multilayer network object - similar to the ones in Networkx - having as an input a Supra Adjacency Matrix." - -"For privacy reasons, we used random MST matrices on Github " - # One should just change the value of (which is now N=203) as the size of the matrix according to the demand -"The user should declare the supra matrices files in the beginning of the code - The code is quite robust - as long as the matrices are created using a similar pipeline as the one in the Lab." +""" The user should declare the supra matrices files in the beginning of the code - The code is quite robust - +as long as the matrices are created using a similar pipeline as the one in the Lab.""" #################### # SOME SETTINGS!!!!! #################### -layer_size=197 # THis was our setting for BNA ATLAS - for AAL we did 75! +layer_size = 197 # This was our setting for BNA ATLAS - for AAL we did 75! -weighted=False # We are using MST's so the matrices are not weighted - if the matrices are weighted, we should say True!!! +weighted = False # We are using MSTs. Thus, the matrices are not weighted - if the matrices are weighted, we should change it to True!!! -#Should check which file I should put here!!!! +# Should check which file I should put here!!!! # We now should include the file for the supra adjacency matrixed here!!! # TRAINING RANDOM MATRIX - -filename1='supra_randmst.mat' +filename1 = 'supra_randmst.mat' # SOME NAMES USED IN THE LAB BEFORE!!! #filename1='aal_supra_mst_full.mat'#'supra_MST_v2'#'supra_MST.mat' #14 layers including dwi @@ -67,37 +67,34 @@ ######################################### - -# Associating tags for each layer will be helpful for our coding. We used one's bellow -# These are the tags for the Multilayer Networks - It should match the with the layers in the SupraAdjacency Matrix. -print('0 = fmri, 1=pli delta, 2= pli theta, 3= pli alpha1, 4= pli alpha2, 5 = pli beta, 6 = pli gamma, 7 = DWI.') +# Associating tags for each layer will be helpful for our coding. We used the ones below. +# These are the tags for the Multilayer Networks - It should match the with the layers in the Supra Adjacency Matrix. +print('0 = fmri, 1 = pli delta, 2 = pli theta, 3 = pli alpha1, 4 = pli alpha2, 5 = pli beta, 6 = pli gamma, 7 = DWI .') #IMPROVEMENT!!! INCLUDE A FUNCTION TO CHECK THE TAGS FROM LUCAS FILES -layer_tags=['0=fmri', '1=pli delta', '2= pli theta', '3= pli alpha1', '4= pli alpha2', '5 = pli beta', '6 = pli gamma', '7 = DWI'] +layer_tags=['0 = fmri', '1 = pli delta', '2 = pli theta', '3 = pli alpha1', '4 = pli alpha2', '5 = pli beta', '6 = pli gamma', '7 = DWI'] just_tags=['fmri', 'pli_delta', 'pli_theta', 'pli_alpha1', 'pli_alpha2', 'pli_beta', 'pli_gamma', 'DWI'] plot_tags=['fMRI', 'PLI delta', 'PLI theta', 'PLI alpha1', 'PLI alpha2', 'PLI beta', 'PLI gamma', 'DWI'] -Layer_dic={} -for i in range(0,len(just_tags)): - Layer_dic[i]=just_tags[i] +Layer_dic = {} +for i in range(0 , len(just_tags)): + Layer_dic[i] = just_tags[i] print(Layer_dic) ############################################# -#LOADING THE MATRICES +# LOADING THE MATRICES ############################################# - - -#This is the real Data for all Multilayer functions!!! +# This is the real data for all Multilayer functions!!! # Notice that, from now on, every function received the data as input -#If one create other data such as random, weighed, etc, you just need to include it here !!!! +# If one create other data such as random, weighed, etc, you just need to include it here !!!! -#THIS IS THE OBJECT YOU ARE GOING TO USE FOR THE REMMAINING OF THE CODE!!!! +# THIS IS THE OBJECT YOU ARE GOING TO USE FOR THE REMAINING OF THE CODE!!!! Supra_MST = scipy.io.loadmat(filename1) @@ -155,15 +152,15 @@ def Prepare_Multilayer(Data,list_of_layers): #In the matlab file the element [-1] gives the matrices# - name=list(Data.keys())[-1] - multilayer=Data[name] + name = list(Data.keys())[-1] + multilayer = Data[name] # Just checking if there are nan where_are_NaNs = np.isnan(multilayer) multilayer[where_are_NaNs] = 0 - layer_size=197#197 # This are the numbers of nodes in the layer - N=layer_size - layer_list=list_of_layers + layer_size = 197 #197 # This are the numbers of nodes in the layer + N = layer_size + layer_list = list_of_layers layers=[] for i in layer_list: @@ -176,7 +173,7 @@ def Prepare_Multilayer(Data,list_of_layers): "This creates a multilayer network for each individual" # This is the new one -def multlayerG(individual,Data,list_of_single_layers): +def multlayerG(individual, Data, list_of_single_layers): """Creates a Multilayer Network for an individual, given the data, and a list of layers. Parameters @@ -200,8 +197,8 @@ def multlayerG(individual,Data,list_of_single_layers): "Creates a multilayer for an individual i, knowing the number of layers, and the size of the layers" - layers= Prepare_Multilayer(Data,list_of_single_layers) - N =197# 197 # before was 205 + layers= Prepare_Multilayer(Data, list_of_single_layers) + N =197 # 197 # before was 205 number_of_layers=len(list_of_single_layers) G=[] for j in range(0,len(list_of_single_layers)): @@ -211,13 +208,13 @@ def multlayerG(individual,Data,list_of_single_layers): -#Define the type of interconnection between the layers -#"N is the size of the layer"" +# Define the type of interconnection between the layers +# N is the size of the layer -# This creates the supra adjacency matrix" +# This creates the supra adjacency matrix adj_block = mx.lil_matrix(np.zeros((N*number_of_layers,N*number_of_layers))) -#Need to create generic adjacency blocks!!!! +# Need to create generic adjacency blocks!!!! # These are generic interconnection blocks!!! for i in range(number_of_layers): @@ -235,10 +232,11 @@ def multlayerG(individual,Data,list_of_single_layers): return mg ############################# -#CREATING THE AGGREGATE +# CREATING THE AGGREGATE ############################# -#ATENTION: THERE ARE SEVERAL OPTIONS HERE - WE ARE USING A SIMILAR ONE DONE BY MUXVIS - THIS WILL BE AN INTERMEDIATE FUNCTION SO THAT THE OUTPUT OF THE OTHER FUNCTIONS COMES BACK PER NODE +# ATENTION: THERE ARE SEVERAL OPTIONS HERE - WE ARE USING A SIMILAR ONE DONE BY MUXVIS - THIS WILL BE AN INTERMEDIATE FUNCTION SO +# THAT THE OUTPUT OF THE OTHER FUNCTIONS COMES BACK PER NODE # This is the aggregate I suppose Muxviz is using - we double-checked this (with Lucas) @@ -257,9 +255,9 @@ def MVaggregate(multiple_layers_list, number_layers): """ k, m = divmod(len(multiple_layers_list), number_layers) - temp=list(multiple_layers_list[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(number_layers)) - temp_mean=np.mean(temp,axis=0) - temp_mean=temp_mean/max(temp_mean) + temp = list(multiple_layers_list[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(number_layers)) + temp_mean = np.mean(temp,axis=0) + temp_mean = temp_mean/max(temp_mean) #for sublists in temp: # m=np.max(temp[sublists]) # for i in sublists: @@ -306,7 +304,7 @@ def MVaggregate(multiple_layers_list, number_layers): -def Group_eigenvector_centrality(Data,list_of_single_layers): +def Group_eigenvector_centrality(Data, list_of_single_layers): """Returns a flat list with the aggregate output for EC, given a Data, and a list_of_single_layers @@ -326,19 +324,19 @@ def Group_eigenvector_centrality(Data,list_of_single_layers): """ "This list will save all the eigenvector centralities for all individuals in all layers." - name=list(Data.keys())[-1] + name = list(Data.keys())[-1] - number_of_individuals=Data[name].shape[2] + number_of_individuals = Data[name].shape[2] - Group_eigenvector=[] + Group_eigenvector = [] for individual in range(number_of_individuals): - temp=multlayerG(individual,Data,list_of_single_layers) + temp = multlayerG(individual,Data,list_of_single_layers) - m=mx.eigenvector_centrality_numpy(temp) + m = mx.eigenvector_centrality_numpy(temp) #m=mx.eigenvector_centrality(multlayerG(individual,number_of_layers,list_of_layers)) #temp=multlayer3(i) - temp1=list(m.values()) - temp2=MVaggregate(temp1, len(list_of_single_layers)) + temp1 = list(m.values()) + temp2 = MVaggregate(temp1, len(list_of_single_layers)) #temp2=aggregate(temp1,len(list_of_single_layers)) # This is a list of lists with all centralities for all individuals Group_eigenvector.append(temp2) @@ -347,7 +345,7 @@ def Group_eigenvector_centrality(Data,list_of_single_layers): return flat_list -def Group_clustering(Data,list_of_single_layers): +def Group_clustering(Data, list_of_single_layers): """Returns a flat list with the aggregate output for Group clustering, given a Data, and a list_of_single_layers Parameters @@ -369,19 +367,18 @@ def Group_clustering(Data,list_of_single_layers): - name=list(Data.keys())[-1] + name = list(Data.keys())[-1] - number_of_individuals=Data[name].shape[2] + number_of_individuals = Data[name].shape[2] - Group_clustering=[] + Group_clustering = [] for individual in range(number_of_individuals): - temp=multlayerG(individual,Data,list_of_single_layers) + temp = multlayerG(individual, Data, list_of_single_layers) - m=mx.clustering(temp) + m = mx.clustering(temp) #m=mx.eigenvector_centrality(multlayerG(individual,number_of_layers,list_of_layers)) - #temp=multlayer3(i) - temp1=list(m.values()) - temp2=MVaggregate(temp1, len(list_of_single_layers)) + temp1 = list(m.values()) + temp2 = MVaggregate(temp1, len(list_of_single_layers)) #temp2=aggregate(temp1,len(list_of_single_layers)) # This is a list of lists with all centralities for all individuals Group_clustering.append(temp2) @@ -393,21 +390,21 @@ def Group_clustering(Data,list_of_single_layers): -def Group_degree_centrality(Data,list_of_single_layers): +def Group_degree_centrality(Data, list_of_single_layers): "This list will save all the betweeness centralities means for all individuals" - name=list(Data.keys())[-1] + name = list(Data.keys())[-1] - number_of_individuals=Data[name].shape[2] + number_of_individuals = Data[name].shape[2] - Group_deg_centrality=[] + Group_deg_centrality = [] for individual in range(number_of_individuals): - temp=multlayerG(individual,Data,list_of_single_layers) + temp = multlayerG(individual, Data, list_of_single_layers) - m=mx.degree_centrality(temp) + m = mx.degree_centrality(temp) #m=mx.eigenvector_centrality(multlayerG(individual,number_of_layers,list_of_layers)) #temp=multlayer3(i) - temp1=list(m.values()) - temp2=MVaggregate(temp1, len(list_of_single_layers)) + temp1 = list(m.values()) + temp2 = MVaggregate(temp1, len(list_of_single_layers)) #temp2=aggregate(temp1,len(list_of_single_layers)) # This is a list of lists with all centralities for all individuals Group_deg_centrality.append(temp2) @@ -418,22 +415,21 @@ def Group_degree_centrality(Data,list_of_single_layers): return flat_list -def Group_eccentricity(Data,list_of_single_layers): +def Group_eccentricity(Data, list_of_single_layers): #m=multlayerGNew(3,Supra_MST,[0,5,1]) "This list will save all the eccentricity for all individuals" - name=list(Data.keys())[-1] + name = list(Data.keys())[-1] - number_of_individuals=Data[name].shape[2] + number_of_individuals = Data[name].shape[2] - Group_eccentricity=[] + Group_eccentricity = [] for individual in range(number_of_individuals): - temp=multlayerG(individual,Data,list_of_single_layers) + temp = multlayerG(individual, Data, list_of_single_layers) - m=mx.eccentricity(temp) + m = mx.eccentricity(temp) #m=mx.eigenvector_centrality(multlayerG(individual,number_of_layers,list_of_layers)) - #temp=multlayer3(i) - temp1=list(m.values()) - temp2=MVaggregate(temp1, len(list_of_single_layers)) + temp1 = list(m.values()) + temp2 = MVaggregate(temp1, len(list_of_single_layers)) #temp2=aggregate(temp1,len(list_of_single_layers)) # This is a list of lists with all centralities for all individuals Group_eccentricity.append(temp2) @@ -442,22 +438,22 @@ def Group_eccentricity(Data,list_of_single_layers): return flat_list -def Non_norm_Group_eccentricity(Data,list_of_single_layers): +def Non_norm_Group_eccentricity(Data, list_of_single_layers): #m=multlayerGNew(3,Supra_MST,[0,5,1]) "This list will save all the nonormalized eccentricity for all individuals" - name=list(Data.keys())[-1] + name = list(Data.keys())[-1] - number_of_individuals=Data[name].shape[2] + number_of_individuals = Data[name].shape[2] - Group_eccentricity=[] + Group_eccentricity = [] for individual in range(number_of_individuals): - temp=multlayerG(individual,Data,list_of_single_layers) + temp = multlayerG(individual, Data, list_of_single_layers) - m=mx.eccentricity(temp) + m = mx.eccentricity(temp) #m=mx.eigenvector_centrality(multlayerG(individual,number_of_layers,list_of_layers)) #temp=multlayer3(i) - temp1=list(m.values()) - temp2=temp1#MVaggregate(temp1, len(list_of_single_layers)) + temp1 = list(m.values()) + temp2 = temp1 #MVaggregate(temp1, len(list_of_single_layers)) #temp2=aggregate(temp1,len(list_of_single_layers)) # This is a list of lists with all centralities for all individuals @@ -468,21 +464,20 @@ def Non_norm_Group_eccentricity(Data,list_of_single_layers): return flat_list -def Group_bet_centrality(Data,list_of_single_layers): +def Group_bet_centrality(Data, list_of_single_layers): "This list will save all the betweeness centralities means for all individuals" - name=list(Data.keys())[-1] + name = list(Data.keys())[-1] - number_of_individuals=Data[name].shape[2] + number_of_individuals = Data[name].shape[2] - Group_bet_centrality=[] + Group_bet_centrality = [] for individual in range(number_of_individuals): - temp=multlayerG(individual,Data,list_of_single_layers) + temp = multlayerG(individual,Data,list_of_single_layers) - m=mx.betweenness_centrality(temp) + m = mx.betweenness_centrality(temp) #m=mx.eigenvector_centrality(multlayerG(individual,number_of_layers,list_of_layers)) - #temp=multlayer3(i) - temp1=list(m.values()) - temp2=MVaggregate(temp1, len(list_of_single_layers)) + temp1 = list(m.values()) + temp2 = MVaggregate(temp1, len(list_of_single_layers)) #temp2=aggregate(temp1,len(list_of_single_layers)) # This is a list of lists with all centralities for all individuals Group_bet_centrality.append(temp2) @@ -496,22 +491,22 @@ def Group_bet_centrality(Data,list_of_single_layers): "Here comes the mean and standard deviations from all metrics we analized" -def Group_eigenvector_centrality_mean(Data,list_of_single_layers): +def Group_eigenvector_centrality_mean(Data, list_of_single_layers): #m=multlayerGNew(3,Supra_MST,[0,5,1]) "This list will save all the eigenvector centralities means for all individuals" - name=list(Data.keys())[-1] + name = list(Data.keys())[-1] - number_of_individuals=Data[name].shape[2] + number_of_individuals = Data[name].shape[2] - Group_eigenvector_mean=[] + Group_eigenvector_mean = [] for individual in range(number_of_individuals): - temp=multlayerG(individual,Data,list_of_single_layers) + temp = multlayerG(individual, Data, list_of_single_layers) - m=mx.eigenvector_centrality_numpy(temp) + m = mx.eigenvector_centrality_numpy(temp) #m=mx.eigenvector_centrality(multlayerG(individual,number_of_layers,list_of_layers)) #temp=multlayer3(i) - temp1=list(m.values()) - temp2=MVaggregate(temp1, len(list_of_single_layers)) + temp1 = list(m.values()) + temp2 = MVaggregate(temp1, len(list_of_single_layers)) #temp2=aggregate(temp1,len(list_of_single_layers)) Group_eigenvector_mean.append(np.mean(temp2)) @@ -522,19 +517,19 @@ def Group_eigenvector_centrality_mean(Data,list_of_single_layers): -def Group_eigenvector_centrality_std(Data,list_of_single_layers): +def Group_eigenvector_centrality_std(Data, list_of_single_layers): "This list will save all the eigenvector centralities stds for all individuals" - name=list(Data.keys())[-1] + name = list(Data.keys())[-1] - number_of_individuals=Data[name].shape[2] - Group_eigenvector_std=[] + number_of_individuals = Data[name].shape[2] + Group_eigenvector_std = [] for individual in range(number_of_individuals): - temp=multlayerG(individual,Data,list_of_single_layers) - m=mx.eigenvector_centrality_numpy(temp) + temp = multlayerG(individual, Data, list_of_single_layers) + m = mx.eigenvector_centrality_numpy(temp) #m=mx.eigenvector_centrality(multlayerG(individual,number_of_layers,list_of_layers)) #temp=multlayer3(i) - temp1=list(m.values()) - temp2=MVaggregate(temp1, len(list_of_single_layers)) # This is MV aggregate - we can change then later for something else + temp1 = list(m.values()) + temp2 = MVaggregate(temp1, len(list_of_single_layers)) # This is MV aggregate - we can change then later for something else #temp2=aggregate(temp1,len(list_of_single_layers)) Group_eigenvector_std.append(np.std(temp2)) @@ -545,10 +540,10 @@ def Group_eigenvector_centrality_std(Data,list_of_single_layers): ############################### #SOME PLOTTING FUNCTIONS FOR EC ############################### -#"Those are functions to plot the previous functions." +#Those are functions to plot the previous functions. -def Plot_Group_EC(Data,list_of_single_layers): +def Plot_Group_EC(Data, list_of_single_layers): """This function plots a histogram with the values of the Eigenvalue centrality for all nodes across all individuals." Parameters @@ -571,20 +566,20 @@ def Plot_Group_EC(Data,list_of_single_layers): print('layers =',[layer_tags[i] for i in list_of_single_layers]) - temp=Group_eigenvector_centrality(Data,list_of_single_layers) + temp = Group_eigenvector_centrality(Data,list_of_single_layers) plt.figure(figsize=(8,5)) plt.hist(temp) # We can edit here the output if we have a vector with the name of the layers - plt.xlabel('Eig. centr. - aggr- all nodes all individuals ',fontsize=20) + plt.xlabel('Eig. centr. - aggr- all nodes all individuals ', fontsize=20) #plt.xlim(-5,220) - plt.ylabel("frequence",fontsize=20) + plt.ylabel("frequence", fontsize=20) #plt.xlim(40, 160) plt.ylim(0, 3500) #plt.title('individual '+str(individual)) plt.show() -def Plot_EC(individual,Data,list_of_single_layers): +def Plot_EC(individual, Data, list_of_single_layers): """This function plots a histogram with the values of the Eigenvalue centrality for all nodes one individual." Parameters @@ -607,19 +602,19 @@ def Plot_EC(individual,Data,list_of_single_layers): print('layers =',[layer_tags[i] for i in list_of_single_layers]) #multlayerG(individual,Data,list_of_single_layers) - m=mx.eigenvector_centrality_numpy(multlayerG(individual,Data,list_of_single_layers)) + m = mx.eigenvector_centrality_numpy(multlayerG(individual,Data,list_of_single_layers)) #temp=multlayer3(i) - temp1=list(m.values()) - temp2=MVaggregate(temp1, len(list_of_single_layers)) + temp1 = list(m.values()) + temp2 = MVaggregate(temp1, len(list_of_single_layers)) # This is the Mux Viz aggregate - We change the aggregate here if yo want later #temp2=aggregate(temp1,len(list_of_single_layers)) plt.hist((temp2)) ###IMPROVEMENT: We can edit here the output if we have a vector with the name of the layers - plt.xlabel('Eigenvector centrality - aggregate ',fontsize=20) + plt.xlabel('Eigenvector centrality - aggregate ', fontsize=20) #plt.xlim(-5,220) - plt.ylabel("frequence",fontsize=20) + plt.ylabel("frequence", fontsize=20) plt.ylim(0, 100) - plt.title('individual '+str(individual)) + plt.title('individual '+ str(individual)) plt.show() return @@ -642,12 +637,12 @@ def Plot_EC(individual,Data,list_of_single_layers): -def eigenvectorcentrality(individual,Data,list_of_single_layers): +def eigenvectorcentrality(individual, Data, list_of_single_layers): print('layers =',[layer_tags[i] for i in list_of_single_layers]) #multlayerG(individual,Data,list_of_single_layers) - m=mx.eigenvector_centrality_numpy(multlayerG(individual,Data,list_of_single_layers)) + m = mx.eigenvector_centrality_numpy(multlayerG(individual, Data, list_of_single_layers)) #temp=multlayer3(i) - temp1=list(m.values()) + temp1 = list(m.values()) #temp2=aggregate(temp1,len(list_of_single_layers)) #plt.hist((temp2)) # We can edit here the output if we have a vector with the name of the layers @@ -663,35 +658,34 @@ def Group_degree_centrality_mean(Data,list_of_single_layers): print('layers =',[layer_tags[i] for i in list_of_single_layers]) #print('layers =',[layer_tags[i] for i in list_of_single_layers]) - name=list(Data.keys())[-1] + name = list(Data.keys())[-1] - number_of_individuals=Data[name].shape[2] + number_of_individuals = Data[name].shape[2] "This list will save all the eigenvector centralities means for all individuals" - Group_degree_centrality_mean=[] + Group_degree_centrality_mean = [] for individual in range(number_of_individuals): - m=mx.degree_centrality(multlayerG(individual,Data,list_of_single_layers)) + m = mx.degree_centrality(multlayerG(individual,Data,list_of_single_layers)) #temp=multlayer3(i) - temp1=list(m.values()) # this is not aggregated - temp2=MVaggregate(temp1, len(list_of_single_layers)) # This is Mux Viz aggregate + temp1 = list(m.values()) # this is not aggregated + temp2 = MVaggregate(temp1, len(list_of_single_layers)) # This is Mux Viz aggregate #temp2=aggregate(temp1,len(list_of_single_layers)) # IF you want - by any chance to do a different agreggate you should change the line above Group_degree_centrality_mean.append(np.mean(temp2)) return (Group_degree_centrality_mean) -def Group_degree_centrality_std(Data,list_of_single_layers): +def Group_degree_centrality_std(Data, list_of_single_layers): print('layers =',[layer_tags[i] for i in list_of_single_layers]) - name=list(Data.keys())[-1] + name = list(Data.keys())[-1] - number_of_individuals=Data[name].shape[2] + number_of_individuals = Data[name].shape[2] "This list will save all the eigenvector centralities means for all individuals" - Group_degree_centrality_std=[] + Group_degree_centrality_std = [] for individual in range(number_of_individuals): - m=mx.degree_centrality(multlayerG(individual,Data,list_of_single_layers)) - #temp=multlayer3(i) - temp1=list(m.values()) - temp2=MVaggregate(temp1, len(list_of_single_layers)) # This is Mux Viz aggregate + m = mx.degree_centrality(multlayerG(individual, Data, list_of_single_layers)) + temp1 = list(m.values()) + temp2 = MVaggregate(temp1, len(list_of_single_layers)) # This is Mux Viz aggregate #temp2=aggregate(temp1,len(list_of_single_layers)) You can change the aggregate here print(temp2) Group_degree_centrality_std.append(np.std(temp2)) @@ -701,31 +695,31 @@ def Group_degree_centrality_std(Data,list_of_single_layers): #### IMPROVEMENT ALSO WITHIM -def Mask_subnetwork(result,target): +def Mask_subnetwork(result, target): "If you say the target nodes for a given subnetwork, this command you return only the results of list associated with the target nodes" chunks = [result[x:x+layer_size] for x in range(0, len(result), layer_size)] - mask=[chunk[x] for chunk in chunks for x in target] + mask = [chunk[x] for chunk in chunks for x in target] return mask # This creates a SPSS file - Data is the data, name is the name of the file and tag is the collum name -def SaveSPSS(Data,name,tag): +def SaveSPSS(Data, name, tag): #Data=Mask_subnetwork(result,target) cols = [tag] - df = pd.DataFrame(Data,columns=cols) + df = pd.DataFrame(Data, columns=cols) df.to_csv(name+'.csv') #pyreadstat.write_sav(df, name+'.csv') return # Check if You wanna put Mask true of False - create a bollean that does stuff when a mask is choosen or not -def Function_output(function,Data,filename,colname,layers): +def Function_output(function, Data, filename, colname, layers): # THis can be nany function we develeloped! - temp=function(Data,layers) - FPN=list(range(0,197)) #THIS IS WITHOUT THE MASK - before 197 + temp = function(Data, layers) + FPN = list(range(0,197)) #THIS IS WITHOUT THE MASK - before 197 #FPN=[16,17,18,19,20,21,28,29,30,31,93,94,123,124,133,134,163,164] #old one - FPN=[16,17,18,19,20,21,28,29,30,31,93,94,129,130,139,140,169,170] - temp_FPN=Mask_subnetwork(temp,FPN) - SaveSPSS(temp_FPN,filename,colname) + temp_FPN = Mask_subnetwork(temp, FPN) + SaveSPSS(temp_FPN, filename, colname) return @@ -1079,4 +1073,4 @@ def Function_output(function,Data,filename,colname,layers): -# \ No newline at end of file +#