-
-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathcreate_train_test_set.py
executable file
·177 lines (143 loc) · 5.2 KB
/
create_train_test_set.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import os
import sys
from pathlib import Path
import click
import psutil
from pyspark.sql import SparkSession, Window
from pyspark.sql.functions import (
col,
monotonically_increasing_id,
lit,
row_number,
rand,
)
from pyspark.sql.types import StructType, StructField, ArrayType, LongType, DoubleType
def top_n_per_group(spark_df, groupby, topn):
spark_df = spark_df.withColumn("rand", rand(seed=9876))
window = Window.partitionBy(col(groupby)).orderBy(col("rand"))
return (
spark_df.select(col("*"), row_number().over(window).alias("row_number"))
.where(col("row_number") <= topn)
.drop("row_number", "rand")
)
def split_train_test(df, test_size, under_sampling_train=True):
# add increasing id for df
df = df.withColumn("id", monotonically_increasing_id())
# stratified split
fractions = (
df.select("label")
.distinct()
.withColumn("fraction", lit(test_size))
.rdd.collectAsMap()
)
test_id = (
df.sampleBy("label", fractions, seed=9876)
.select("id")
.withColumn("is_test", lit(True))
)
df = df.join(test_id, how="left", on="id")
train_df = df.filter(col("is_test").isNull()).select("feature", "label")
test_df = df.filter(col("is_test")).select("feature", "label")
# under sampling
if under_sampling_train:
# get label list with count of each label
label_count_df = train_df.groupby("label").count().toPandas()
# get min label count in train set for under sampling
min_label_count = int(label_count_df["count"].min())
train_df = top_n_per_group(train_df, "label", min_label_count)
return train_df, test_df
def save_parquet(df, path):
output_path = path.absolute().as_uri()
(df.write.mode("overwrite").parquet(output_path))
def save_train(df, path_dir):
path = path_dir / "train.parquet"
save_parquet(df, path)
def save_test(df, path_dir):
path = path_dir / "test.parquet"
save_parquet(df, path)
def create_train_test_for_task(df, label_col, test_size, under_sampling, data_dir_path):
task_df = df.filter(col(label_col).isNotNull()).selectExpr(
"feature", f"{label_col} as label"
)
print("splitting train test")
train_df, test_df = split_train_test(task_df, test_size, under_sampling)
print("splitting train test done")
print("saving train")
save_train(train_df, data_dir_path)
print("saving train done")
print("saving test")
save_test(test_df, data_dir_path)
print("saving test done")
def print_df_label_distribution(spark, path):
print(path)
print(
spark.read.parquet(path.absolute().as_uri()).groupby("label").count().toPandas()
)
@click.command()
@click.option(
"-s",
"--source",
help="path to the directory containing preprocessed files",
required=True,
)
@click.option(
"-t",
"--target",
help="path to the directory for persisting train and test set for both app and traffic classification",
required=True,
)
@click.option("--test_size", default=0.2, help="size of test size", type=float)
@click.option(
"--under_sampling", default=True, help="under sampling training data", type=bool
)
def main(source, target, test_size, under_sampling):
source_data_dir_path = Path(source)
target_data_dir_path = Path(target)
# prepare dir for dataset
application_data_dir_path = target_data_dir_path / "application_classification"
traffic_data_dir_path = target_data_dir_path / "traffic_classification"
# initialise local spark
os.environ["PYSPARK_PYTHON"] = sys.executable
os.environ["PYSPARK_DRIVER_PYTHON"] = sys.executable
memory_gb = psutil.virtual_memory().available // 1024 // 1024 // 1024
spark = (
SparkSession.builder.master("local[*]")
.config("spark.driver.memory", f"{memory_gb}g")
.config("spark.driver.host", "127.0.0.1")
.getOrCreate()
)
# read data
schema = StructType(
[
StructField("app_label", LongType(), True),
StructField("traffic_label", LongType(), True),
StructField("feature", ArrayType(DoubleType()), True),
]
)
df = spark.read.schema(schema).json(
f"{source_data_dir_path.absolute().as_uri()}/*.json.gz"
)
# prepare data for application classification and traffic classification
print("processing application classification dataset")
create_train_test_for_task(
df=df,
label_col="app_label",
test_size=test_size,
under_sampling=under_sampling,
data_dir_path=application_data_dir_path,
)
print("processing traffic classification dataset")
create_train_test_for_task(
df=df,
label_col="traffic_label",
test_size=test_size,
under_sampling=under_sampling,
data_dir_path=traffic_data_dir_path,
)
# stats
print_df_label_distribution(spark, application_data_dir_path / "train.parquet")
print_df_label_distribution(spark, application_data_dir_path / "test.parquet")
print_df_label_distribution(spark, traffic_data_dir_path / "train.parquet")
print_df_label_distribution(spark, traffic_data_dir_path / "test.parquet")
if __name__ == "__main__":
main()