forked from tensorlayer/HyperPose
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
124 lines (121 loc) · 5.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#!/usr/bin/env python3
import os
import cv2
import sys
import math
import json
import glob
import argparse
import matplotlib
import numpy as np
import tensorflow as tf
import tensorlayer as tl
from hyperpose import Config,Model,Dataset
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='FastPose.')
parser.add_argument("--model_type",
type=str,
default="Openpose",
help="human pose estimation model type, available options: Openpose, LightweightOpenpose ,MobilenetThinOpenpose, PoseProposal")
parser.add_argument("--model_backbone",
type=str,
default="Default",
help="model backbone, available options: Mobilenet, Vggtiny, Vgg19, Resnet18, Resnet50")
parser.add_argument("--model_name",
type=str,
default="default_name",
help="model name,to distinguish model and determine model dir")
parser.add_argument("--dataset_type",
type=str,
default="MSCOCO",
help="dataset name,to determine which dataset to use, available options: MSCOCO, MPII ")
parser.add_argument("--dataset_version",
type=str,
default="2017",
help="dataset version, only use for MSCOCO and available for version 2014 and 2017")
parser.add_argument("--dataset_path",
type=str,
default="data",
help="dataset path,to determine the path to load the dataset")
parser.add_argument('--train_type',
type=str,
default="Single_train",
help='train type, available options: Single_train, Parallel_train')
parser.add_argument('--kf_optimizer',
type=str,
default='Sync_avg',
help='kung fu parallel optimizor,available options: Sync_sgd, Sync_avg, Pair_avg')
parser.add_argument('--use_official_dataset',
type=int,
default=1,
help='whether to use official dataset, could be used when only user data is needed')
parser.add_argument('--useradd_data_path',
type=str,
default=None,
help='path to user data directory where contains images folder and annotation json file')
parser.add_argument('--domainadapt_data_path',
type=str,
default=None,
help='path to user data directory where contains images for domain adaptation')
parser.add_argument('--optim_type',
type=str,
default="Adam",
help='optimizer type used for training')
parser.add_argument('--learning_rate',
type=float,
default=1e-4,
help='learning rate')
parser.add_argument('--log_interval',
type=int,
default=1e2,
help='log frequency')
parser.add_argument('--save_interval',
type=int,
default=5e3,
help='log frequency')
args=parser.parse_args()
#config model
Config.set_model_name(args.model_name)
Config.set_model_type(Config.MODEL[args.model_type])
Config.set_model_backbone(Config.BACKBONE[args.model_backbone])
Config.set_log_interval(args.log_interval)
Config.set_save_interval(args.save_interval)
#config train
Config.set_train_type(Config.TRAIN[args.train_type])
Config.set_learning_rate(args.learning_rate)
Config.set_optim_type(Config.OPTIM[args.optim_type])
Config.set_kungfu_option(Config.KUNGFU[args.kf_optimizer])
#config dataset
print(f"test enabling official dataset:{args.use_official_dataset}")
Config.set_official_dataset(args.use_official_dataset)
Config.set_dataset_type(Config.DATA[args.dataset_type])
Config.set_dataset_path(args.dataset_path)
Config.set_dataset_version(args.dataset_version)
#sample add user data to train
if(args.useradd_data_path!=None):
useradd_train_image_paths=[]
useradd_train_targets=[]
image_dir=os.path.join(args.useradd_data_path,"images")
anno_path=os.path.join(args.useradd_data_path,"anno.json")
#generate image paths and targets
anno_json=json.load(open(anno_path,mode="r"))
for image_path in anno_json["annotations"].keys():
anno=anno_json["annotations"][image_path]
useradd_train_image_paths.append(os.path.join(image_dir,image_path))
useradd_train_targets.append({
"kpt":anno["keypoints"],
"mask":None,
"bbx":anno["bbox"],
"labeled":1
})
Config.set_useradd_data(useradd_train_image_paths,useradd_train_targets,useradd_scale_rate=1)
#sample use domain adaptation to train:
if(args.domainadapt_data_path!=None):
domainadapt_image_paths=glob.glob(os.path.join(args.domainadapt_data_path,"images","*"))
Config.set_domainadapt_dataset(domainadapt_train_img_paths=domainadapt_image_paths,domainadapt_scale_rate=1)
#train
config=Config.get_config()
model=Model.get_model(config)
train=Model.get_train(config)
dataset=Dataset.get_dataset(config)
train(model,dataset)