-
Notifications
You must be signed in to change notification settings - Fork 94
/
train.py
642 lines (554 loc) · 25.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
import argparse
import logging
import time
import itertools
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
import datasets
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed, DummyOptim, DummyScheduler
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
from diffusers.optimization import get_scheduler
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
import os
import sys
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(BASE_DIR)
from adapter.resampler import Resampler
from IGPair import VDDataset, collate_fn
from adapter.attention_processor import CacheAttnProcessor2_0, CAttnProcessor2_0, RefSAttnProcessor2_0
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--image_encoder_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_text_model_path",
type=str,
default=None,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_vae_model_path",
type=str,
default=None,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_adapter_model_path",
type=str,
default=None,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--dataset_json_path",
type=str,
default=None,
help="Path to dataset json file.",
)
parser.add_argument(
"--output_dir",
type=str,
default="sd-model-finetuned",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
'--clip_penultimate',
type=bool,
default=False,
help='Use penultimate CLIP layer for text embedding'
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--noise_offset", type=float, default=0.05, help="noise_offset."
)
parser.add_argument(
"--snr_gamma", type=float, default=0, help="noise_offset."
)
parser.add_argument("--num_train_epochs", type=int, default=100000)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.01,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
return args
def checkpoint_model(checkpoint_folder, ckpt_id, model, epoch, last_global_step, **kwargs):
"""Utility function for checkpointing model + optimizer dictionaries
The main purpose for this is to be able to resume training from that instant again
"""
checkpoint_state_dict = {
"epoch": epoch,
"last_global_step": last_global_step,
}
# Add extra kwargs too
checkpoint_state_dict.update(kwargs)
success = model.save_checkpoint(checkpoint_folder, ckpt_id, checkpoint_state_dict)
status_msg = f"checkpointing: checkpoint_folder={checkpoint_folder}, ckpt_id={ckpt_id}"
if success:
logging.info(f"Success {status_msg}")
else:
logging.warning(f"Failure {status_msg}")
return
def load_training_checkpoint(model, load_dir, tag=None, **kwargs):
"""Utility function for checkpointing model + optimizer dictionaries
The main purpose for this is to be able to resume training from that instant again
"""
_, checkpoint_state_dict = model.load_checkpoint(load_dir, tag=tag, **kwargs)
epoch = checkpoint_state_dict["epoch"]
last_global_step = checkpoint_state_dict["last_global_step"]
del checkpoint_state_dict
return (epoch, last_global_step)
def count_model_params(model):
return sum([p.numel() for p in model.parameters()]) / 1e6
def compute_snr(noise_scheduler, timesteps):
"""
Computes SNR as per
https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
"""
alphas_cumprod = noise_scheduler.alphas_cumprod
sqrt_alphas_cumprod = alphas_cumprod ** 0.5
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
# Expand the tensors.
# Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[
timesteps
].float()
while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
alpha = sqrt_alphas_cumprod.expand(timesteps.shape)
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
device=timesteps.device
)[timesteps].float()
while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)
# Compute SNR.
snr = (alpha / sigma) ** 2
return snr
class SDModel(torch.nn.Module):
"""SD model with image prompt"""
def __init__(self, unet, ref_unet, proj, adapter_modules) -> None:
super().__init__()
self.unet = unet
self.ref_unet = ref_unet
self.proj = proj
self.adapter_modules = adapter_modules
def forward(self, encoder_hidden_states, latents, ref_latents, clip_image_embeddings, timesteps):
ref_timesteps = torch.zeros_like(timesteps)
cloth_proj_embed = self.proj(clip_image_embeddings)
_ = self.ref_unet(
ref_latents,
ref_timesteps,
cloth_proj_embed,
return_dict=False,
)
# get cache tensors
sa_hidden_states = {}
for name in self.ref_unet.attn_processors.keys():
sa_hidden_states[name] = self.ref_unet.attn_processors[name].cache["hidden_states"]
# get noise predictions
# Predict the noise residual and compute loss
noise_pred = self.unet(
latents,
timesteps,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs={
"sa_hidden_states": sa_hidden_states,
}
).sample
return noise_pred
def main():
args = parse_args()
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator = Accelerator(
log_with=args.report_to,
project_dir=logging_dir,
gradient_accumulation_steps=args.gradient_accumulation_steps
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load models and create wrapper for stable diffusion
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
vae = AutoencoderKL.from_pretrained(args.pretrained_vae_model_path)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.image_encoder_path)
# load ipa weight
ipa_weight = torch.load(args.pretrained_adapter_model_path, map_location="cpu")
image_proj = Resampler(
dim=unet.config.cross_attention_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=16,
embedding_dim=image_encoder.config.hidden_size,
output_dim=unet.config.cross_attention_dim,
ff_mult=4
)
image_proj.load_state_dict(ipa_weight['image_proj'])
# set attention processor
attn_procs = {}
st = unet.state_dict()
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
# lora_rank = hidden_size // 2 # args.lora_rank
if cross_attention_dim is None:
attn_procs[name] = RefSAttnProcessor2_0(name, hidden_size)
layer_name = name.split(".processor")[0]
weights = {
"to_k_ref.weight": st[layer_name + ".to_k.weight"],
"to_v_ref.weight": st[layer_name + ".to_v.weight"],
}
attn_procs[name].load_state_dict(weights)
else:
attn_procs[name] = CAttnProcessor2_0(name, hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim) # .to(accelerator.device)]
unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
del st
ref_unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
ref_unet.set_attn_processor(
{name: CacheAttnProcessor2_0() for name in ref_unet.attn_processors.keys()}) # set cache
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
image_encoder.requires_grad_(False)
image_proj.requires_grad_(True)
ref_unet.requires_grad_(True)
adapter_modules.requires_grad_(True)
sd_model = SDModel(unet, ref_unet, image_proj, adapter_modules)
params_to_opt = itertools.chain(sd_model.proj.parameters(), sd_model.ref_unet.parameters(),
sd_model.adapter_modules.parameters())
accelerator.print("Trainable parameters: proj:{:.2f}M, ref_unet:{:.2f}M, adapter_modules:{:.2f}M".format(
count_model_params(sd_model.proj), count_model_params(sd_model.ref_unet),
count_model_params(sd_model.adapter_modules)))
# accelerator.print("Trainable parameters: {:.2f}M".format(len(params_to_opt)))
# Creates Dummy Optimizer if `optimizer` was specified in the config file else creates Adam Optimizer
if (
accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
optimizer = torch.optim.AdamW(params_to_opt, lr=args.learning_rate, weight_decay=args.weight_decay)
else:
# use deepspeed config
optimizer = DummyOptim(
params_to_opt,
lr=accelerator.state.deepspeed_plugin.deepspeed_config["optimizer"]["params"]["lr"],
weight_decay=accelerator.state.deepspeed_plugin.deepspeed_config["optimizer"]["params"]["weight_decay"]
)
# TODO (patil-suraj): load scheduler using args
noise_scheduler = DDIMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000,
rescale_betas_zero_snr=True,
timestep_spacing="trailing", prediction_type="epsilon",
)
dataset = VDDataset(
[
args.dataset_json_path,
],
tokenizer,
)
train_sampler = torch.utils.data.distributed.DistributedSampler(
dataset, num_replicas=accelerator.num_processes, rank=accelerator.process_index, shuffle=True
)
train_dataloader = torch.utils.data.DataLoader(
dataset, sampler=train_sampler, collate_fn=collate_fn, batch_size=args.train_batch_size, num_workers=4,
)
if accelerator.state.deepspeed_plugin is not None:
# here we use agrs.gradient_accumulation_steps
accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"] = args.gradient_accumulation_steps
# Creates Dummy Scheduler if `scheduler` was specified in the config file else creates `args.lr_scheduler_type` Scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
lr_scheduler = get_scheduler(
name=args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
else:
# use deepspeed scheduler
lr_scheduler = DummyScheduler(
optimizer,
warmup_num_steps=accelerator.state.deepspeed_plugin.deepspeed_config["scheduler"]["params"][
"warmup_num_steps"]
)
if (
accelerator.state.deepspeed_plugin is not None
and accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] == "auto"
):
accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = args.train_batch_size
sd_model, optimizer, lr_scheduler = accelerator.prepare(sd_model, optimizer, lr_scheduler)
weight_dtype = torch.float32
if accelerator.state.deepspeed_plugin is None:
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
else:
if accelerator.state.deepspeed_plugin.deepspeed_config["fp16"]["enabled"]:
weight_dtype = torch.float16
elif accelerator.state.deepspeed_plugin.deepspeed_config["bf16"]["enabled"]:
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
# text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
# Figure out how many steps we should save the Accelerator states
if hasattr(args.checkpointing_steps, "isdigit"):
checkpointing_steps = args.checkpointing_steps
if args.checkpointing_steps.isdigit():
checkpointing_steps = int(args.checkpointing_steps)
else:
checkpointing_steps = None
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("text2image", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
# New Code #
# Loads the DeepSpeed checkpoint from the specified path
last_epoch, last_global_step = load_training_checkpoint(
sd_model,
args.resume_from_checkpoint,
**{"load_optimizer_states": True, "load_lr_scheduler_states": True},
)
accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}")
starting_epoch = last_epoch
global_steps = last_global_step
for epoch in range(starting_epoch, args.num_train_epochs):
unet.train()
train_loss = 0.0
step = 0
begin = time.perf_counter()
for batch in train_dataloader:
load_data_time = time.perf_counter() - begin
# Convert images to latent space
with torch.no_grad():
latents = vae.encode(
batch["vae_person"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
ref_latents = vae.encode(
batch["vae_clothes"].to(accelerator.device, dtype=weight_dtype)).latent_dist.sample()
ref_latents = ref_latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
if args.noise_offset > 0:
noise += args.noise_offset * torch.randn(
(latents.shape[0], latents.shape[1], 1, 1),
device=latents.device,
)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
clip_images = []
for clip_image, drop_image_embed in zip(batch["clip_image"], batch["drop_image_embed"]):
if drop_image_embed == 1:
clip_images.append(torch.zeros_like(clip_image))
else:
clip_images.append(clip_image)
clip_images = torch.stack(clip_images, dim=0)
with torch.no_grad():
# print()
image_embeds = image_encoder(clip_images.to(accelerator.device, dtype=weight_dtype),
output_hidden_states=True).hidden_states[-2]
with torch.no_grad():
encoder_hidden_states = text_encoder(batch["input_ids"].to(accelerator.device))[0]
if noise_scheduler.prediction_type == "epsilon":
target = noise
elif noise_scheduler.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(
latents, noise, timesteps
)
else:
raise ValueError(
f"Unknown prediction type {noise_scheduler.prediction_type}"
)
model_pred = sd_model(encoder_hidden_states, noisy_latents, ref_latents, image_embeds, timesteps)
if args.snr_gamma == 0:
loss = F.mse_loss(
model_pred.float(), target.float(), reduction="mean"
)
else:
snr = compute_snr(noise_scheduler, timesteps)
if noise_scheduler.config.prediction_type == "v_prediction":
# Velocity objective requires that we add one to SNR values before we divide by them.
snr = snr + 1
mse_loss_weights = (
torch.stack(
[snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1
).min(dim=1)[0]
/ snr
)
loss = F.mse_loss(
model_pred.float(), target.float(), reduction="none"
)
loss = (
loss.mean(dim=list(range(1, len(loss.shape))))
* mse_loss_weights
)
loss = loss.mean()
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
train_loss += avg_loss.item()
# Backpropagate
accelerator.backward(loss)
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step() # do nothing
lr_scheduler.step() # only for not deepspeed lr_scheduler
optimizer.zero_grad() # do nothing
if accelerator.sync_gradients:
accelerator.log({"train_loss": train_loss / args.gradient_accumulation_steps}, step=global_steps)
train_loss = 0.0
if accelerator.is_main_process:
logging.info(
"Epoch {}, step {}, step_loss: {}, lr: {}, time: {}, data_time: {}".format(
epoch, global_steps, loss.detach().item(), lr_scheduler.get_lr()[0],
time.perf_counter() - begin, load_data_time)
)
global_steps += 1
step += 1
# checkpoint
if isinstance(checkpointing_steps, int):
if global_steps % checkpointing_steps == 0:
checkpoint_model(args.output_dir, global_steps, sd_model, epoch, global_steps)
# stop training
if global_steps >= args.max_train_steps:
break
begin = time.perf_counter()
accelerator.wait_for_everyone()
# Save last model
checkpoint_model(args.output_dir, global_steps, sd_model, epoch, global_steps)
accelerator.end_training()
if __name__ == "__main__":
main()