forked from aks/bash-lib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
real-utils.sh
308 lines (247 loc) · 9.59 KB
/
real-utils.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#!/bin/bash
# real-utils.sh
#
# Copyright 2015 Alan K. Stebbens <[email protected]>
REAL_UTILS_VERSION="real-utils.sh v1.5"
[[ "$REAL_UTILS_SH" = "$REAL_UTILS_VERSION" ]] && return
REAL_UTILS_SH="$REAL_UTILS_VERSION"
real_help() {
cat 1>&2 <<'EOF'
real-utils.sh is a bash library that enables real number arithmetic in bash
scripts. Real numbers are managed as flaoting point strings in the format
"X.Y", where X is the integer portion, and "Y" is the fractional part.
Usage:
source real-utils.sh
real_compute "EXPRESSIN" [SCALE]
real_eval "EXPRESSION" [SCALE]
real_cond EXPRESSION [SCALE]
real_int REAL
real_frac REAL
real_help
Descriptions:
real_compute "EXPRESSION" [SCALE]
The `real_compute` bash function evaluates `EXPRESSION` using syntax, operators
and functions as described in the `bc` manual. All numbers and variables
within `EXPRESSION` are interpreted by `bc`. The result of the computation is
output to `STDOUT`.
If an error occurs, there is no indication. This function does not set a
return code, nor does it set the shell status variable `$?`. Use `real_eval`
for those effects.
In addition to the operators and functions defined by `bc`, the following
additional functions are also made available within the `EXPRESSION`:
abs(x) deg(x) log10(x) rad(x)
acos(x) exp(x) logn(x) round(x,s)
asin(x) frac(x) ndeg(x) sin(x)
atan(x) int(x) pi() tan(x)
cos(x) log(x) pow(x,y)
To see the `bc` definitions of these functions, use the `real_functions`
function.
real_eval "EXPRESSION" [SCALE]
The `real_eval` bash function invokes `real_compute` on the arguments, prints
the result on `STDOUT`, and returns with the `bc` return code `$?` (0 or 1, for
success or error, respectively).
real_cond "EXPRESSION" [SCALE]
`EXPRESSION` is a real number conditional which should evaluate to 1 or 0. The
return status is 0 for true, 1 for false. Example usage:
if real_cond "$num < $max" 2 ; then
...
fi
real_scale=NUM
Set the precision of subsequent real number arithmetic results. The
default is 2.
real_int REAL -- outputs the integer portion of a REAL number
real_frac REAL -- outputs the fractional portion of a REAL number
sin R, cos R, tan R -- trig functions on radians R
asin X, acos X, atan X -- inverse trig functions
cotan X, sec X, cosec X -- cotangent, secant, cosecant
arccot X -- arc-cotangent
hypot X Y -- hypotenuse X, Y [sqrt(X^2 + Y^2)]
sqrt X -- square-root of X
logn X, log X -- natural log, log base 10
exp X -- exponent X of E (e.g., e^X)
pow X Y -- power function [X^Y]
rad D -- convert degrees D to radians
deg R -- convert radians R to degrees
ndeg R -- convert radians R to natural degrees (0..360)
round X S -- Round X to S decimals. When S=0, rounds to the nearest integer.
real_int X -- outputs integer portion of X
real_frac X -- outputs fractional portion of X
abs X -- Return the absolute value of X.
PI = 3.141592653589793
TAU = 6.283185307179586 # 2*PI
E = 2.718281828459045
EOF
}
help_real() { real_help ; }
# Default scale used by real functions.
[[ -n "$real_scale" ]] || export real_scale=2
# real_functions -- define our built-in functions (for bc)
real_functions() {
cat <<'EOF'
define pi() { auto r,s ; s=scale; scale=10 ; r=4*a(1); scale=s ; return(r) ; }
define int(x) { auto r,s ; s=scale; scale=0 ; r=((x - x%1)/1) ; scale=s ; return(r) ; }
define frac(x) { auto r,s ; s=scale; scale=0 ; r=(x%1) ; scale=s ; return(r) ; }
define sin(x) { return(s(x)) ; }
define cos(x) { return(c(x)) ; }
define tan(x) { return(s(x)/c(x)) ; }
define asin(x) { return(2*a(x/(1+sqrt(1-(x^2))))) ; }
define acos(x) { return(2*a(sqrt(1-(x^2))/(1+x))) ; }
define atan(x) { return(a(x)) ; }
define logn(x) { return(l(x)) ; }
define log(x) { return(l(x)/l(10.0)) ; }
define log10(x) { return(log(x)) ; }
define exp(x) { return(e(x)) ; }
define pow(x,y) { return(x^y) ; }
define rad(x) { return(x*pi()/180) ; }
define deg(x) { return(x*180/pi()) ; }
define ndeg(x) { return((360 + deg(x))%360) ; }
define round(x,s) { auto r,o
o=scale(x) ; scale=s+1
r = x + 5*10^(-(s+1))
scale=s
return(r/1) ; }
define abs(x) { if ( x<0 ) return(-x) else return(x) ; }
EOF
}
# real_args_or_input "$@"
#
# Return the 2 arguments, with special quoting on arg1, or read from STDIN
real_args_or_input() {
if (( $# == 0 )) ; then
local -a args
local func="${FUNCNAME[1]}"
while (( ${#args[*]} == 0 )); do
read -p "$func? " -a args
done
echo "set - '${args[0]}' ${args[1]}"
else
echo "set - '$1' $2"
fi
}
# real_compute EXPR [SCALE]
#
# Basic computational engine: performs bc-based evaluation, but does not do
# shell status or return code management.
real_compute() {
eval "`real_args_or_input \"$@\"`"
( real_functions
echo "scale=${2:-$real_scale} ; "
echo "$1"
) | bc -lq 2>/dev/null
}
# real_eval 'EXPRESSION' [SCALE]
#
# Performs evaluation of an arithmentic expression, supporting real numbers.
#
# $? == 1 => bad calculation
real_eval() {
eval "`real_args_or_input \"$@\"`"
local stat=0 res=0 scale="${2:-$real_scale}"
if (( $# > 0 )) ; then
res=`real_compute "$1" $scale`
stat=$?
if [[ $stat -eq 0 && -z "$res" ]]; then stat=1; fi
fi
echo $res
return $stat
}
# real_cond CONDITION [SCALE]
#
# Test a conditional expression using real numbers.
#
# if real_cond "10.1 > 9.3" 1
# ...
# fi
real_cond() {
eval "`real_args_or_input \"$@\"`"
local cond=0 scale=${2:-$real_scale}
if (( $# > 0 )); then
cond=`real_compute "$1" $scale`
if [[ -z "$cond" ]]; then cond=0; fi
if [[ "$cond" != 0 && "$cond" != 1 ]]; then cond=0; fi
fi
local stat=$((cond == 0))
return $stat
}
# real_int [REAL] # return the integer part of a REAL
# real_frac [REAL] # return the fractional part of a REAL
#
# Alternative usage:
#
# echo REAL | real_int
# echo REAL | real_frac
#
# Note: these are simple text functions on the string representation of real
# numbers.
real_int() {
eval "`real_args_or_input \"$@\"`"
echo "${1%.*}"
}
real_frac() {
eval "`real_args_or_input \"$@\"`"
if [[ "$1" =~ \. ]]; then
echo ".${1#*.}"
fi
}
# Math functions
#
# All math functions operate with scale=8 unless overriden
#
# Some handy trig constants
PI='3.141592653589793'
TAU='6.283185307179586' # 2*PI
E='2.718281828459045'
# Trig functions
#
# sin REAL [SCALE=8]
# cos REAL
# tan REAL
#
# cotan REAL - cotangent
# sec REAL - secant
# csc REAL - cosecant
#
# arcsin REAL - arcsine aka "asin"
# arccos REAL - arcosine aka "acos"
# arctan REAL - arctan aka "atan"
#
# pi = 3.141592654
# tau = 2*pi
sin() { eval `real_args_or_input "$@"` ; real_eval "s($1)" ${2:-8} ; }
cos() { eval `real_args_or_input "$@"` ; real_eval "c($1)" ${2:-8} ; }
tan() { eval `real_args_or_input "$@"` ; real_eval "(s($1)/c($1))" ${2:-8} ; }
cotan() { eval `real_args_or_input "$@"` ; real_eval "(c($1)/s($1))" ${2:-8} ; }
sec() { eval `real_args_or_input "$@"` ; real_eval "(1/c($1))" ${2:-8} ; }
cosec() { eval `real_args_or_input "$@"` ; real_eval "(1/s($1))" ${2:-8} ; }
csc() { eval `real_args_or_input "$@"` ; cosec "$@" ; }
# hypot X Y [SCALE]
hypot() { eval `real_args_or_input "$@"` ; real_eval "sqrt(($1)^2 + ($2)^2)" ${3:-8} ; }
# Inverse trig funcs
asin() { eval `real_args_or_input "$@"` ; real_eval "asin($1)" ${2:-8} ; }
acos() { eval `real_args_or_input "$@"` ; real_eval "acos($1)" ${2:-8} ; }
atan() { eval `real_args_or_input "$@"` ; real_eval "atan($1)" ${2:-8} ; }
arccot() { eval `real_args_or_input "$@"` ; real_eval "(($PI/2)-a($1))" ${2:-8} ; }
arcsin() { eval `real_args_or_input "$@"` ; asin "$@" ; }
arccos() { eval `real_args_or_input "$@"` ; acos "$@" ; }
arctan() { eval `real_args_or_input "$@"` ; atag "$@" ; }
# Log functions
logn() { eval `real_args_or_input "$@"` ; real_eval "l($1)" ${2:-8} ; }
log10() { eval `real_args_or_input "$@"` ; real_eval "l($1)/l(10.0)" ${2:-8} ; }
log() { eval `real_args_or_input "$@"` ; log10 "$@" ; }
exp() { eval `real_args_or_input "$@"` ; real_eval "e($1)" ${2:-8} ; }
# Power function
pow() { eval `real_args_or_input "$@"` ; real_eval "$1^$2" ${2:-8} ; }
# rad x -- convert degrees to radians
# deg x -- convert radians to degrees
# ndeg x -- convert radians to normalized degrees (0 <= d <= 360)
#
# 1 rad == 180 deg / PI
# 1 deg == PI rad / 180
deg() { eval `real_args_or_input "$@"` ; real_eval "deg($1)" ${2:-8} ; }
ndeg() { eval `real_args_or_input "$@"` ; real_eval "ndeg($1)" ${2:-8} ; }
rad() { eval `real_args_or_input "$@"` ; real_eval "rad($1)" ${2:-8} ; }
# absolute X
abs() { eval `real_args_or_input "$@"` ; real_eval "abs($1)" ; }
# Round NUM [SCALE] -- round NUM at the SCALE
round() { eval `real_args_or_input "$@"` ; real_eval "round($1, ${2:-(scale($1)-1)})" ${2:-8} ; }
# vim: sw=2: ai: