-
Notifications
You must be signed in to change notification settings - Fork 4
/
arithmeticcoding_fast.py
628 lines (561 loc) · 21.8 KB
/
arithmeticcoding_fast.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
#
# Reference arithmetic coding
# Copyright (c) Project Nayuki
#
# https://www.nayuki.io/page/reference-arithmetic-coding
# https://github.com/nayuki/Reference-arithmetic-coding
#
import numpy as np
import sys
python3 = sys.version_info.major >= 3
import time
# ---- Arithmetic coding core classes ----
# Provides the state and behaviors that arithmetic coding encoders and decoders share.
class ArithmeticCoderBase(object):
# Constructs an arithmetic coder, which initializes the code range.
def __init__(self, statesize):
# if statesize < 1:
# raise ValueError("State size out of range")
# -- Configuration fields --
# Number of bits for the 'low' and 'high' state variables. Must be at least 1.
# - Larger values are generally better - they allow a larger maximum frequency total (MAX_TOTAL),
# and they reduce the approximation error inherent in adapting fractions to integers;
# both effects reduce the data encoding loss and asymptotically approach the efficiency
# of arithmetic coding using exact fractions.
# - But larger state sizes increase the computation time for integer arithmetic,
# and compression gains beyond ~30 bits essentially zero in real-world applications.
# - Python has native bigint arithmetic, so there is no upper limit to the state size.
# For Java and C++ where using native machine-sized integers makes the most sense,
# they have a recommended value of STATE_SIZE=32 as the most versatile setting.
self.STATE_SIZE = statesize
# Maximum range (high+1-low) during coding (trivial), which is 2^STATE_SIZE = 1000...000.
self.MAX_RANGE = 1 << self.STATE_SIZE
# Minimum range (high+1-low) during coding (non-trivial), which is 0010...010.
self.MIN_RANGE = (self.MAX_RANGE >> 2) + 2
# Maximum allowed total from a frequency table at all times during coding. This differs from Java
# and C++ because Python's native bigint avoids constraining the size of intermediate computations.
self.MAX_TOTAL = self.MIN_RANGE
# Bit mask of STATE_SIZE ones, which is 0111...111.
self.MASK = self.MAX_RANGE - 1
# The top bit at width STATE_SIZE, which is 0100...000.
self.TOP_MASK = self.MAX_RANGE >> 1
# The second highest bit at width STATE_SIZE, which is 0010...000. This is zero when STATE_SIZE=1.
self.SECOND_MASK = self.TOP_MASK >> 1
# -- State fields --
# Low end of this arithmetic coder's current range. Conceptually has an infinite number of trailing 0s.
self.low = 0
# High end of this arithmetic coder's current range. Conceptually has an infinite number of trailing 1s.
self.high = self.MASK
# Updates the code range (low and high) of this arithmetic coder as a result
# of processing the given symbol with the given frequency table.
# Invariants that are true before and after encoding/decoding each symbol:
# - 0 <= low <= code <= high < 2^STATE_SIZE. ('code' exists only in the decoder.)
# Therefore these variables are unsigned integers of STATE_SIZE bits.
# - (low < 1/2 * 2^STATE_SIZE) && (high >= 1/2 * 2^STATE_SIZE).
# In other words, they are in different halves of the full range.
# - (low < 1/4 * 2^STATE_SIZE) || (high >= 3/4 * 2^STATE_SIZE).
# In other words, they are not both in the middle two quarters.
# - Let range = high - low + 1, then MAX_RANGE/4 < MIN_RANGE <= range
# <= MAX_RANGE = 2^STATE_SIZE. These invariants for 'range' essentially
# dictate the maximum total that the incoming frequency table can have.
def update(self, cumul, symbol):
# State check
#s = time.time()
low = self.low
high = self.high
# if low >= high or (low & self.MASK) != low or (high & self.MASK) != high:
# raise AssertionError("Low or high out of range")
range = high - low + 1
# if not (self.MIN_RANGE <= range <= self.MAX_RANGE):
# raise AssertionError("Range out of range")
# Frequency table values check
total = np.asscalar(cumul[-1])
symlow = np.asscalar(cumul[symbol])
symhigh = np.asscalar(cumul[symbol+1])
# if symlow == symhigh:
# raise ValueError("Symbol has zero frequency")
# if total > self.MAX_TOTAL:
# raise ValueError("Cannot code symbol because total is too large")
# Update range
newlow = low + symlow * range // total
newhigh = low + symhigh * range // total - 1
self.low = newlow
self.high = newhigh
# While the highest bits are equal
#s1 = time.time()
#print("update1", s1-s)
while ((self.low ^ self.high) & self.TOP_MASK) == 0:
self.shift()
self.low = (self.low << 1) & self.MASK
self.high = ((self.high << 1) & self.MASK) | 1
# While the second highest bit of low is 1 and the second highest bit of high is 0
#s2 = time.time()
#print("update2", s2-s1)
while (self.low & ~self.high & self.SECOND_MASK) != 0:
self.underflow()
self.low = (self.low << 1) & (self.MASK >> 1)
self.high = ((self.high << 1) & (self.MASK >> 1)) | self.TOP_MASK | 1
#s3 = time.time()
#print("update3", s3-s2)
# Called to handle the situation when the top bit of 'low' and 'high' are equal.
def shift(self):
raise NotImplementedError()
# Called to handle the situation when low=01(...) and high=10(...).
def underflow(self):
raise NotImplementedError()
# Encodes symbols and writes to an arithmetic-coded bit stream.
class ArithmeticEncoder(ArithmeticCoderBase):
# Constructs an arithmetic coding encoder based on the given bit output stream.
def __init__(self, statesize, bitout):
super(ArithmeticEncoder, self).__init__(statesize)
# The underlying bit output stream.
self.output = bitout
# Number of saved underflow bits. This value can grow without bound.
self.num_underflow = 0
# Encodes the given symbol based on the given frequency table.
# This updates this arithmetic coder's state and may write out some bits.
def write(self, cumul, symbol):
# if not isinstance(freqs, CheckedFrequencyTable):
# freqs = CheckedFrequencyTable(freqs)
#s = time.time()
self.update(cumul, symbol)
#print('update', time.time()-s)
# Terminates the arithmetic coding by flushing any buffered bits, so that the output can be decoded properly.
# It is important that this method must be called at the end of the each encoding process.
# Note that this method merely writes data to the underlying output stream but does not close it.
def finish(self):
#s = time.time()
self.output.write(1)
#print('finish', time.time()-s)
def shift(self):
#s = time.time()
bit = self.low >> (self.STATE_SIZE - 1)
self.output.write(bit)
# Write out the saved underflow bits
#s1 = time.time()
#print('shift1', s1-s)
for _ in range(self.num_underflow):
self.output.write(bit ^ 1)
self.num_underflow = 0
#print('shift2', time.time()-s1)
def underflow(self):
self.num_underflow += 1
# Reads from an arithmetic-coded bit stream and decodes symbols.
class ArithmeticDecoder(ArithmeticCoderBase):
# Constructs an arithmetic coding decoder based on the
# given bit input stream, and fills the code bits.
def __init__(self, statesize, bitin):
super(ArithmeticDecoder, self).__init__(statesize)
# The underlying bit input stream.
self.input = bitin
# The current raw code bits being buffered, which is always in the range [low, high].
self.code = 0
for _ in range(self.STATE_SIZE):
self.code = self.code << 1 | self.read_code_bit()
# Decodes the next symbol based on the given frequency table and returns it.
# Also updates this arithmetic coder's state and may read in some bits.
def read(self, cumul, alphabet_size):
# if not isinstance(freqs, CheckedFrequencyTable):
# freqs = CheckedFrequencyTable(freqs)
# Translate from coding range scale to frequency table scale
total = np.asscalar(cumul[-1])
# if total > self.MAX_TOTAL:
# raise ValueError("Cannot decode symbol because total is too large")
range = self.high - self.low + 1
offset = self.code - self.low
value = ((offset + 1) * total - 1) // range
# assert value * range // total <= offset
# assert 0 <= value < total
# A kind of binary search. Find highest symbol such that freqs.get_low(symbol) <= value.
start = 0
end = alphabet_size
while end - start > 1:
middle = (start + end) >> 1
if cumul[middle] > value:
end = middle
else:
start = middle
# assert start + 1 == end
symbol = start
# assert freqs.get_low(symbol) * range // total <= offset < freqs.get_high(symbol) * range // total
self.update(cumul, symbol)
# if not (self.low <= self.code <= self.high):
# raise AssertionError("Code out of range")
return symbol
def shift(self):
self.code = ((self.code << 1) & self.MASK) | self.read_code_bit()
def underflow(self):
self.code = (self.code & self.TOP_MASK) | ((self.code << 1) & (self.MASK >> 1)) | self.read_code_bit()
# Returns the next bit (0 or 1) from the input stream. The end
# of stream is treated as an infinite number of trailing zeros.
def read_code_bit(self):
temp = self.input.read()
if temp == -1:
temp = 0
return temp
## ---- Frequency table classes ----
#
## A table of symbol frequencies. The table holds data for symbols numbered from 0
## to get_symbol_limit()-1. Each symbol has a frequency, which is a non-negative integer.
## Frequency table objects are primarily used for getting cumulative symbol
## frequencies. These objects can be mutable depending on the implementation.
#class FrequencyTable(object):
#
# # Returns the number of symbols in this frequency table, which is a positive number.
# def get_symbol_limit(self):
# raise NotImplementedError()
#
# # Returns the frequency of the given symbol. The returned value is at least 0.
# def get(self, symbol):
# raise NotImplementedError()
#
# # Sets the frequency of the given symbol to the given value.
# # The frequency value must be at least 0.
# def set(self, symbol, freq):
# raise NotImplementedError()
#
# # Increments the frequency of the given symbol.
# def increment(self, symbol):
# raise NotImplementedError()
#
# # Returns the total of all symbol frequencies. The returned value is at
# # least 0 and is always equal to get_high(get_symbol_limit() - 1).
# def get_total(self):
# raise NotImplementedError()
#
# # Returns the sum of the frequencies of all the symbols strictly
# # below the given symbol value. The returned value is at least 0.
# def get_low(self, symbol):
# raise NotImplementedError()
#
# # Returns the sum of the frequencies of the given symbol
# # and all the symbols below. The returned value is at least 0.
# def get_high(self, symbol):
# raise NotImplementedError()
#
#
#
## An immutable frequency table where every symbol has the same frequency of 1.
## Useful as a fallback model when no statistics are available.
#class FlatFrequencyTable(FrequencyTable):
#
# # Constructs a flat frequency table with the given number of symbols.
# def __init__(self, numsyms):
# if numsyms < 1:
# raise ValueError("Number of symbols must be positive")
# self.numsymbols = numsyms # Total number of symbols, which is at least 1
#
# # Returns the number of symbols in this table, which is at least 1.
# def get_symbol_limit(self):
# return self.numsymbols
#
# # Returns the frequency of the given symbol, which is always 1.
# def get(self, symbol):
# self._check_symbol(symbol)
# return 1
#
# # Returns the total of all symbol frequencies, which is
# # always equal to the number of symbols in this table.
# def get_total(self):
# return self.numsymbols
#
# # Returns the sum of the frequencies of all the symbols strictly below
# # the given symbol value. The returned value is equal to 'symbol'.
# def get_low(self, symbol):
# self._check_symbol(symbol)
# return symbol
#
#
# # Returns the sum of the frequencies of the given symbol and all
# # the symbols below. The returned value is equal to 'symbol' + 1.
# def get_high(self, symbol):
# self._check_symbol(symbol)
# return symbol + 1
#
#
# # Returns silently if 0 <= symbol < numsymbols, otherwise raises an exception.
# def _check_symbol(self, symbol):
# if 0 <= symbol < self.numsymbols:
# return
# else:
# raise ValueError("Symbol out of range")
#
# # Returns a string representation of this frequency table. The format is subject to change.
# def __str__(self):
# return "FlatFrequencyTable={}".format(self.numsymbols)
#
# # Unsupported operation, because this frequency table is immutable.
# def set(self, symbol, freq):
# raise NotImplementedError()
#
# # Unsupported operation, because this frequency table is immutable.
# def increment(self, symbol):
# raise NotImplementedError()
#
#
#
## A mutable table of symbol frequencies. The number of symbols cannot be changed
## after construction. The current algorithm for calculating cumulative frequencies
## takes linear time, but there exist faster algorithms such as Fenwick trees.
#class SimpleFrequencyTable(FrequencyTable):
#
# # Constructs a simple frequency table in one of two ways:
# # - SimpleFrequencyTable(sequence):
# # Builds a frequency table from the given sequence of symbol frequencies.
# # There must be at least 1 symbol, and no symbol has a negative frequency.
# # - SimpleFrequencyTable(freqtable):
# # Builds a frequency table by copying the given frequency table.
# def __init__(self, freqs):
## if isinstance(freqs, FrequencyTable):
## numsym = freqs.get_symbol_limit()
## self.frequencies = np.array([freqs.get(i) for i in range(numsym)],dtype=np.uint64)
## else: # Assume it is a sequence type
# self.frequencies = np.array(freqs,dtype=np.uint64) # Make copy
# self.cumulative = np.zeros(self.frequencies.size+1,dtype=np.uint64)
# # 'frequencies' is a list of the frequency for each symbol.
# # Its length is at least 1, and each element is non-negative.
## if len(self.frequencies) < 1:
## raise ValueError("At least 1 symbol needed")
## for freq in self.frequencies:
## if freq < 0:
## raise ValueError("Negative frequency")
#
# # Always equal to the sum of 'frequencies'
# self.total = np.sum(self.frequencies)
#
# # cumulative[i] is the sum of 'frequencies' from 0 (inclusive) to i (exclusive).
# # Initialized lazily. When it is not None, the data is valid.
# self.cumulative_set = False
#
#
# # Returns the number of symbols in this frequency table, which is at least 1.
# def get_symbol_limit(self):
# return len(self.frequencies)
#
#
# # Returns the frequency of the given symbol. The returned value is at least 0.
# def get(self, symbol):
## self._check_symbol(symbol)
# return self.frequencies[symbol]
#
#
# # Sets the frequency of the given symbol to the given value. The frequency value
# # must be at least 0. If an exception is raised, then the state is left unchanged.
# def set(self, symbol, freq):
## self._check_symbol(symbol)
## if freq < 0:
## raise ValueError("Negative frequency")
# temp = self.total - self.frequencies[symbol]
## assert temp >= 0
# self.total = temp + freq
# self.frequencies[symbol] = freq
# self.cumulative_set = False
#
# def update_table(self, new_freq):
# self.frequencies = np.array(new_freq,dtype=np.uint64)
# self.total = np.sum(self.frequencies)
# self.cumulative_set = False
#
# # Increments the frequency of the given symbol.
# def increment(self, symbol):
## self._check_symbol(symbol)
# self.total += 1
# self.frequencies[symbol] += 1
# self.cumulative_set = False
#
#
# # Returns the total of all symbol frequencies. The returned value is at
# # least 0 and is always equal to get_high(get_symbol_limit() - 1).
# def get_total(self):
# return self.total
#
#
# # Returns the sum of the frequencies of all the symbols strictly
# # below the given symbol value. The returned value is at least 0.
# def get_low(self, symbol):
## self._check_symbol(symbol)
# if self.cumulative_set == False:
# self._init_cumulative()
# return self.cumulative[symbol]
#
#
# # Returns the sum of the frequencies of the given symbol
# # and all the symbols below. The returned value is at least 0.
# def get_high(self, symbol):
## self._check_symbol(symbol)
# if self.cumulative_set == False:
# self._init_cumulative()
# return self.cumulative[symbol + 1]
#
#
# # Recomputes the array of cumulative symbol frequencies.
# def _init_cumulative(self):
# self.cumulative[1:] = np.cumsum(self.frequencies)
# self.cumulative_set = True
## cumul = [0]
## sum = 0
## for freq in self.frequencies:
## sum += freq
## cumul.append(sum)
## assert sum == self.total
## self.cumulative = cumul
#
#
# # Returns silently if 0 <= symbol < len(frequencies), otherwise raises an exception.
# def _check_symbol(self, symbol):
# if 0 <= symbol < len(self.frequencies):
# return
# else:
# raise ValueError("Symbol out of range")
#
#
# # Returns a string representation of this frequency table,
# # useful for debugging only, and the format is subject to change.
# def __str__(self):
# result = ""
# for (i, freq) in enumerate(self.frequencies):
# result += "{}\t{}\n".format(i, freq)
# return result
#
# A wrapper that checks the preconditions (arguments) and postconditions (return value) of all
# the frequency table methods. Useful for finding faults in a frequency table implementation.
#class CheckedFrequencyTable(FrequencyTable):
#
# def __init__(self, freqtab):
# # The underlying frequency table that holds the data
# self.freqtable = freqtab
#
#
# def get_symbol_limit(self):
# result = self.freqtable.get_symbol_limit()
# if result <= 0:
# raise AssertionError("Non-positive symbol limit")
# return result
#
#
# def get(self, symbol):
# result = self.freqtable.get(symbol)
# if not self._is_symbol_in_range(symbol):
# raise AssertionError("ValueError expected")
# if result < 0:
# raise AssertionError("Negative symbol frequency")
# return result
#
#
# def get_total(self):
# result = self.freqtable.get_total()
# if result < 0:
# raise AssertionError("Negative total frequency")
# return result
#
#
# def get_low(self, symbol):
# if self._is_symbol_in_range(symbol):
# low = self.freqtable.get_low (symbol)
# high = self.freqtable.get_high(symbol)
# if not (0 <= low <= high <= self.freqtable.get_total()):
# raise AssertionError("Symbol low cumulative frequency out of range")
# return low
# else:
# self.freqtable.get_low(symbol)
# raise AssertionError("ValueError expected")
#
#
# def get_high(self, symbol):
# if self._is_symbol_in_range(symbol):
# low = self.freqtable.get_low (symbol)
# high = self.freqtable.get_high(symbol)
# if not (0 <= low <= high <= self.freqtable.get_total()):
# raise AssertionError("Symbol high cumulative frequency out of range")
# return high
# else:
# self.freqtable.get_high(symbol)
# raise AssertionError("ValueError expected")
#
#
# def __str__(self):
# return "CheckFrequencyTable (" + str(self.freqtable) + ")"
#
#
# def set(self, symbol, freq):
# self.freqtable.set(symbol, freq)
# if not self._is_symbol_in_range(symbol) or freq < 0:
# raise AssertionError("ValueError expected")
#
#
# def increment(self, symbol):
# self.freqtable.increment(symbol)
# if not self._is_symbol_in_range(symbol):
# raise AssertionError("ValueError expected")
#
#
# def _is_symbol_in_range(self, symbol):
# return 0 <= symbol < self.get_symbol_limit()
# ---- Bit-oriented I/O streams ----
# A stream of bits that can be read. Because they come from an underlying byte stream,
# the total number of bits is always a multiple of 8. The bits are read in big endian.
class BitInputStream(object):
# Constructs a bit input stream based on the given byte input stream.
def __init__(self, inp):
# The underlying byte stream to read from
self.input = inp
# Either in the range [0x00, 0xFF] if bits are available, or -1 if end of stream is reached
self.currentbyte = 0
# Number of remaining bits in the current byte, always between 0 and 7 (inclusive)
self.numbitsremaining = 0
# Reads a bit from this stream. Returns 0 or 1 if a bit is available, or -1 if
# the end of stream is reached. The end of stream always occurs on a byte boundary.
def read(self):
if self.currentbyte == -1:
return -1
if self.numbitsremaining == 0:
temp = self.input.read(1)
if len(temp) == 0:
self.currentbyte = -1
return -1
self.currentbyte = temp[0] if python3 else ord(temp)
self.numbitsremaining = 8
assert self.numbitsremaining > 0
self.numbitsremaining -= 1
return (self.currentbyte >> self.numbitsremaining) & 1
# Reads a bit from this stream. Returns 0 or 1 if a bit is available, or raises an EOFError
# if the end of stream is reached. The end of stream always occurs on a byte boundary.
def read_no_eof(self):
result = self.read()
if result != -1:
return result
else:
raise EOFError()
# Closes this stream and the underlying input stream.
def close(self):
self.input.close()
self.currentbyte = -1
self.numbitsremaining = 0
# A stream where bits can be written to. Because they are written to an underlying
# byte stream, the end of the stream is padded with 0's up to a multiple of 8 bits.
# The bits are written in big endian.
class BitOutputStream(object):
# Constructs a bit output stream based on the given byte output stream.
def __init__(self, out):
self.output = out # The underlying byte stream to write to
self.currentbyte = 0 # The accumulated bits for the current byte, always in the range [0x00, 0xFF]
self.numbitsfilled = 0 # Number of accumulated bits in the current byte, always between 0 and 7 (inclusive)
#self.byte_buffer = []
# Writes a bit to the stream. The given bit must be 0 or 1.
def write(self, b):
if b not in (0, 1):
raise ValueError("Argument must be 0 or 1")
self.currentbyte = (self.currentbyte << 1) | b
self.numbitsfilled += 1
if self.numbitsfilled == 8:
towrite = bytes((self.currentbyte,)) if python3 else chr(self.currentbyte)
self.output.write(towrite)
self.currentbyte = 0
self.numbitsfilled = 0
# Closes this stream and the underlying output stream. If called when this
# bit stream is not at a byte boundary, then the minimum number of "0" bits
# (between 0 and 7 of them) are written as padding to reach the next byte boundary.
def close(self):
while self.numbitsfilled != 0:
self.write(0)
self.output.close()