-
Notifications
You must be signed in to change notification settings - Fork 19
/
data_processing.py
371 lines (307 loc) · 15.7 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
#
# Copyright 1993-2019 NVIDIA Corporation. All rights reserved.
#
# NOTICE TO LICENSEE:
#
# This source code and/or documentation ("Licensed Deliverables") are
# subject to NVIDIA intellectual property rights under U.S. and
# international Copyright laws.
#
# These Licensed Deliverables contained herein is PROPRIETARY and
# CONFIDENTIAL to NVIDIA and is being provided under the terms and
# conditions of a form of NVIDIA software license agreement by and
# between NVIDIA and Licensee ("License Agreement") or electronically
# accepted by Licensee. Notwithstanding any terms or conditions to
# the contrary in the License Agreement, reproduction or disclosure
# of the Licensed Deliverables to any third party without the express
# written consent of NVIDIA is prohibited.
#
# NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
# LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
# SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
# PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
# NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
# DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
# NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
# NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
# LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
# SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
# DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
# WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
# ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
# OF THESE LICENSED DELIVERABLES.
#
# U.S. Government End Users. These Licensed Deliverables are a
# "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
# 1995), consisting of "commercial computer software" and "commercial
# computer software documentation" as such terms are used in 48
# C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
# only as a commercial end item. Consistent with 48 C.F.R.12.212 and
# 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
# U.S. Government End Users acquire the Licensed Deliverables with
# only those rights set forth herein.
#
# Any use of the Licensed Deliverables in individual and commercial
# software must include, in the user documentation and internal
# comments to the code, the above Disclaimer and U.S. Government End
# Users Notice.
#
import math
from PIL import Image
import numpy as np
import os
# YOLOv3-608 has been trained with these 80 categories from COCO:
# Lin, Tsung-Yi, et al. "Microsoft COCO: Common Objects in Context."
# European Conference on Computer Vision. Springer, Cham, 2014.
def load_label_categories(label_file_path):
categories = [line.rstrip('\n') for line in open(label_file_path)]
return categories
LABEL_FILE_PATH = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'coco_labels.txt')
ALL_CATEGORIES = load_label_categories(LABEL_FILE_PATH)
# Let's make sure that there are 80 classes, as expected for the COCO data set:
CATEGORY_NUM = len(ALL_CATEGORIES)
assert CATEGORY_NUM == 80
class PreprocessYOLO(object):
"""A simple class for loading images with PIL and reshaping them to the specified
input resolution for YOLOv3-608.
"""
def __init__(self, yolo_input_resolution):
"""Initialize with the input resolution for YOLOv3, which will stay fixed in this sample.
Keyword arguments:
yolo_input_resolution -- two-dimensional tuple with the target network's (spatial)
input resolution in HW order
"""
self.yolo_input_resolution = yolo_input_resolution
def process(self, input_image_path):
"""Load an image from the specified input path,
and return it together with a pre-processed version required for feeding it into a
YOLOv3 network.
Keyword arguments:
input_image_path -- string path of the image to be loaded
"""
image_raw, image_resized = self._load_and_resize(input_image_path)
image_preprocessed = self._shuffle_and_normalize(image_resized)
return image_raw, image_preprocessed
def _load_and_resize(self, input_image_path):
"""Load an image from the specified path and resize it to the input resolution.
Return the input image before resizing as a PIL Image (required for visualization),
and the resized image as a NumPy float array.
Keyword arguments:
input_image_path -- string path of the image to be loaded
"""
image_raw = Image.open(input_image_path)
# Expecting yolo_input_resolution in (height, width) format, adjusting to PIL
# convention (width, height) in PIL:
new_resolution = (
self.yolo_input_resolution[1],
self.yolo_input_resolution[0])
image_resized = image_raw.resize(
new_resolution, resample=Image.BICUBIC)
image_resized = np.array(image_resized, dtype=np.float32, order='C')
return image_raw, image_resized
def _shuffle_and_normalize(self, image):
"""Normalize a NumPy array representing an image to the range [0, 1], and
convert it from HWC format ("channels last") to NCHW format ("channels first"
with leading batch dimension).
Keyword arguments:
image -- image as three-dimensional NumPy float array, in HWC format
"""
image /= 255.0
# HWC to CHW format:
image = np.transpose(image, [2, 0, 1])
# CHW to NCHW format
image = np.expand_dims(image, axis=0)
# Convert the image to row-major order, also known as "C order":
image = np.array(image, dtype=np.float32, order='C')
return image
class PostprocessYOLO(object):
"""Class for post-processing the three outputs tensors from YOLOv3-608."""
def __init__(self,
yolo_masks,
yolo_anchors,
obj_threshold,
nms_threshold,
yolo_input_resolution):
"""Initialize with all values that will be kept when processing several frames.
Assuming 3 outputs of the network in the case of (large) YOLOv3.
Keyword arguments:
yolo_masks -- a list of 3 three-dimensional tuples for the YOLO masks
yolo_anchors -- a list of 9 two-dimensional tuples for the YOLO anchors
object_threshold -- threshold for object coverage, float value between 0 and 1
nms_threshold -- threshold for non-max suppression algorithm,
float value between 0 and 1
input_resolution_yolo -- two-dimensional tuple with the target network's (spatial)
input resolution in HW order
"""
self.masks = yolo_masks
self.anchors = yolo_anchors
self.object_threshold = obj_threshold
self.nms_threshold = nms_threshold
self.input_resolution_yolo = yolo_input_resolution
def process(self, outputs, resolution_raw):
"""Take the YOLOv3 outputs generated from a TensorRT forward pass, post-process them
and return a list of bounding boxes for detected object together with their category
and their confidences in separate lists.
Keyword arguments:
outputs -- outputs from a TensorRT engine in NCHW format
resolution_raw -- the original spatial resolution from the input PIL image in WH order
"""
outputs_reshaped = list()
for output in outputs:
outputs_reshaped.append(self._reshape_output(output))
boxes, categories, confidences = self._process_yolo_output(
outputs_reshaped, resolution_raw)
return boxes, categories, confidences
def _reshape_output(self, output):
"""Reshape a TensorRT output from NCHW to NHWC format (with expected C=255),
and then return it in (height,width,3,85) dimensionality after further reshaping.
Keyword argument:
output -- an output from a TensorRT engine after inference
"""
output = np.transpose(output, [0, 2, 3, 1])
_, height, width, _ = output.shape
dim1, dim2 = height, width
dim3 = 3
# There are CATEGORY_NUM=80 object categories:
dim4 = (4 + 1 + CATEGORY_NUM)
return np.reshape(output, (dim1, dim2, dim3, dim4))
def _process_yolo_output(self, outputs_reshaped, resolution_raw):
"""Take in a list of three reshaped YOLO outputs in (height,width,3,85) shape and return
return a list of bounding boxes for detected object together with their category and their
confidences in separate lists.
Keyword arguments:
outputs_reshaped -- list of three reshaped YOLO outputs as NumPy arrays
with shape (height,width,3,85)
resolution_raw -- the original spatial resolution from the input PIL image in WH order
"""
# E.g. in YOLOv3-608, there are three output tensors, which we associate with their
# respective masks. Then we iterate through all output-mask pairs and generate candidates
# for bounding boxes, their corresponding category predictions and their confidences:
boxes, categories, confidences = list(), list(), list()
for output, mask in zip(outputs_reshaped, self.masks):
box, category, confidence = self._process_feats(output, mask)
box, category, confidence = self._filter_boxes(box, category, confidence)
boxes.append(box)
categories.append(category)
confidences.append(confidence)
boxes = np.concatenate(boxes)
categories = np.concatenate(categories)
confidences = np.concatenate(confidences)
# Scale boxes back to original image shape:
width, height = resolution_raw
image_dims = [width, height, width, height]
boxes = boxes * image_dims
# Using the candidates from the previous (loop) step, we apply the non-max suppression
# algorithm that clusters adjacent bounding boxes to a single bounding box:
nms_boxes, nms_categories, nscores = list(), list(), list()
for category in set(categories):
idxs = np.where(categories == category)
box = boxes[idxs]
category = categories[idxs]
confidence = confidences[idxs]
keep = self._nms_boxes(box, confidence)
nms_boxes.append(box[keep])
nms_categories.append(category[keep])
nscores.append(confidence[keep])
if not nms_categories and not nscores:
return None, None, None
boxes = np.concatenate(nms_boxes)
categories = np.concatenate(nms_categories)
confidences = np.concatenate(nscores)
return boxes, categories, confidences
def _process_feats(self, output_reshaped, mask):
"""Take in a reshaped YOLO output in height,width,3,85 format together with its
corresponding YOLO mask and return the detected bounding boxes, the confidence,
and the class probability in each cell/pixel.
Keyword arguments:
output_reshaped -- reshaped YOLO output as NumPy arrays with shape (height,width,3,85)
mask -- 2-dimensional tuple with mask specification for this output
"""
# Two in-line functions required for calculating the bounding box
# descriptors:
def sigmoid(value):
"""Return the sigmoid of the input."""
return 1.0 / (1.0 + math.exp(-value))
def exponential(value):
"""Return the exponential of the input."""
return math.exp(value)
# Vectorized calculation of above two functions:
sigmoid_v = np.vectorize(sigmoid)
exponential_v = np.vectorize(exponential)
grid_h, grid_w, _, _ = output_reshaped.shape
anchors = [self.anchors[i] for i in mask]
# Reshape to N, height, width, num_anchors, box_params:
anchors_tensor = np.reshape(anchors, [1, 1, len(anchors), 2])
box_xy = sigmoid_v(output_reshaped[..., :2])
box_wh = exponential_v(output_reshaped[..., 2:4]) * anchors_tensor
box_confidence = sigmoid_v(output_reshaped[..., 4])
box_confidence = np.expand_dims(box_confidence, axis=-1)
box_class_probs = sigmoid_v(output_reshaped[..., 5:])
col = np.tile(np.arange(0, grid_w), grid_w).reshape(-1, grid_w)
row = np.tile(np.arange(0, grid_h).reshape(-1, 1), grid_h)
col = col.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
row = row.reshape(grid_h, grid_w, 1, 1).repeat(3, axis=-2)
grid = np.concatenate((col, row), axis=-1)
box_xy += grid
box_xy /= (grid_w, grid_h)
box_wh /= self.input_resolution_yolo
box_xy -= (box_wh / 2.)
boxes = np.concatenate((box_xy, box_wh), axis=-1)
# boxes: centroids, box_confidence: confidence level, box_class_probs:
# class confidence
return boxes, box_confidence, box_class_probs
def _filter_boxes(self, boxes, box_confidences, box_class_probs):
"""Take in the unfiltered bounding box descriptors and discard each cell
whose score is lower than the object threshold set during class initialization.
Keyword arguments:
boxes -- bounding box coordinates with shape (height,width,3,4); 4 for
x,y,height,width coordinates of the boxes
box_confidences -- bounding box confidences with shape (height,width,3,1); 1 for as
confidence scalar per element
box_class_probs -- class probabilities with shape (height,width,3,CATEGORY_NUM)
"""
box_scores = box_confidences * box_class_probs
box_classes = np.argmax(box_scores, axis=-1)
box_class_scores = np.max(box_scores, axis=-1)
pos = np.where(box_class_scores >= self.object_threshold)
boxes = boxes[pos]
classes = box_classes[pos]
scores = box_class_scores[pos]
return boxes, classes, scores
def _nms_boxes(self, boxes, box_confidences):
"""Apply the Non-Maximum Suppression (NMS) algorithm on the bounding boxes with their
confidence scores and return an array with the indexes of the bounding boxes we want to
keep (and display later).
Keyword arguments:
boxes -- a NumPy array containing N bounding-box coordinates that survived filtering,
with shape (N,4); 4 for x,y,height,width coordinates of the boxes
box_confidences -- a Numpy array containing the corresponding confidences with shape N
"""
x_coord = boxes[:, 0]
y_coord = boxes[:, 1]
width = boxes[:, 2]
height = boxes[:, 3]
areas = width * height
ordered = box_confidences.argsort()[::-1]
keep = list()
while ordered.size > 0:
# Index of the current element:
i = ordered[0]
keep.append(i)
xx1 = np.maximum(x_coord[i], x_coord[ordered[1:]])
yy1 = np.maximum(y_coord[i], y_coord[ordered[1:]])
xx2 = np.minimum(x_coord[i] + width[i], x_coord[ordered[1:]] + width[ordered[1:]])
yy2 = np.minimum(y_coord[i] + height[i], y_coord[ordered[1:]] + height[ordered[1:]])
width1 = np.maximum(0.0, xx2 - xx1 + 1)
height1 = np.maximum(0.0, yy2 - yy1 + 1)
intersection = width1 * height1
union = (areas[i] + areas[ordered[1:]] - intersection)
# Compute the Intersection over Union (IoU) score:
iou = intersection / union
# The goal of the NMS algorithm is to reduce the number of adjacent bounding-box
# candidates to a minimum. In this step, we keep only those elements whose overlap
# with the current bounding box is lower than the threshold:
indexes = np.where(iou <= self.nms_threshold)[0]
ordered = ordered[indexes + 1]
keep = np.array(keep)
return keep