-
Notifications
You must be signed in to change notification settings - Fork 352
/
convert_weights_pb.py
56 lines (42 loc) · 1.64 KB
/
convert_weights_pb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import yolo_v3
import yolo_v3_tiny
from PIL import Image, ImageDraw
from utils import load_weights, load_coco_names, detections_boxes, freeze_graph
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string(
'class_names', 'coco.names', 'File with class names')
tf.app.flags.DEFINE_string(
'weights_file', 'yolov3.weights', 'Binary file with detector weights')
tf.app.flags.DEFINE_string(
'data_format', 'NCHW', 'Data format: NCHW (gpu only) / NHWC')
tf.app.flags.DEFINE_string(
'output_graph', 'frozen_darknet_yolov3_model.pb', 'Frozen tensorflow protobuf model output path')
tf.app.flags.DEFINE_bool(
'tiny', False, 'Use tiny version of YOLOv3')
tf.app.flags.DEFINE_bool(
'spp', False, 'Use SPP version of YOLOv3')
tf.app.flags.DEFINE_integer(
'size', 416, 'Image size')
def main(argv=None):
if FLAGS.tiny:
model = yolo_v3_tiny.yolo_v3_tiny
elif FLAGS.spp:
model = yolo_v3.yolo_v3_spp
else:
model = yolo_v3.yolo_v3
classes = load_coco_names(FLAGS.class_names)
# placeholder for detector inputs
inputs = tf.placeholder(tf.float32, [None, FLAGS.size, FLAGS.size, 3], "inputs")
with tf.variable_scope('detector'):
detections = model(inputs, len(classes), data_format=FLAGS.data_format)
load_ops = load_weights(tf.global_variables(scope='detector'), FLAGS.weights_file)
# Sets the output nodes in the current session
boxes = detections_boxes(detections)
with tf.Session() as sess:
sess.run(load_ops)
freeze_graph(sess, FLAGS.output_graph)
if __name__ == '__main__':
tf.app.run()