forked from yys-Polaris/InferenceTimeDG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpacs_alexnet_Gphi_projection.py
318 lines (253 loc) · 10 KB
/
pacs_alexnet_Gphi_projection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# coding: utf-8
# In[ ]:
from torch.utils.data import Dataset, DataLoader
import os
import torchvision
import torch
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import resnet18, alexnet
import PIL
from torchlars import LARS
import cv2
import numpy as np
##################################################### Training G_phi & C_psi (classifier) ###########################################
np.random.seed(0)
torch.manual_seed(0)
CHECKPOINT_DIR = "../Models/"
dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
BATCH_SIZE = 64
FEATURE_DIM = 1024
IMAGE_SIZE = 224
CLASSES = 7
beta = 0.01
M = 20000
W = 5
src_path = ''
target_path = ''
class FNet_Alex_PACS(nn.Module):
def __init__(self, hidden_layer_neurons, output_latent_dim):
super(FNet_Alex_PACS, self).__init__()
self.alexnet_m = alexnet(pretrained=True, progress=False)
self.alexnet_m.classifier[6] = nn.Linear(hidden_layer_neurons, hidden_layer_neurons)
self.fc1 = nn.Linear(hidden_layer_neurons, output_latent_dim)
def forward(self, x):
x = self.alexnet_m(x)
x = self.fc1(x)
return x
class DGdata(Dataset):
def __init__(self, root_dir, image_size, domains=None, transform = None):
self.root_dir = root_dir
if root_dir[-1] != "/":
self.root_dir = self.root_dir + "/"
self.categories = ['giraffe', 'horse', 'guitar', 'person', 'dog', 'house', 'elephant']
if domains is None:
self.domains = ["photo", "sketch", "art_painting", "cartoon"]
else:
self.domains = domains
if transform is None:
self.transform = transforms.ToTensor()
else:
self.transform = transform
# make a list of all the files in the root_dir
# and read the labels
self.img_files = []
self.labels = []
self.domain_labels = []
for domain in self.domains:
for category in self.categories:
for image in os.listdir(self.root_dir+domain+'/'+category):
self.img_files.append(image)
self.labels.append(self.categories.index(category))
self.domain_labels.append(self.domains.index(domain))
def __len__(self):
return len(self.img_files)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
img_path = self.root_dir + self.domains[self.domain_labels[idx]] + "/" + self.categories[self.labels[idx]] + "/" + self.img_files[idx]
image = PIL.Image.open(img_path)
label = self.labels[idx]
return self.transform(image), label
class Flatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), -1)
class UnFlatten(nn.Module):
def forward(self, input, size=256):
return input.view(input.size(0), size, 1, 1)
class VAE_PACS_Alex(nn.Module):
def __init__(self, image_channels=1, h_dim=256, z_dim=64):
super(VAE_PACS_Alex, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(image_channels, 4, kernel_size=3, stride=2,padding=1),
nn.ReLU(),
nn.Conv2d(4, 8, kernel_size=3, stride=2,padding=1),
nn.ReLU(),
nn.Conv2d(8, 16, kernel_size=3, stride=2,padding=1),
nn.ReLU(),
Flatten()
)
self.fc1 = nn.Linear(h_dim, z_dim)
self.fc2 = nn.Linear(h_dim, z_dim)
self.fc3 = nn.Linear(z_dim, h_dim)
self.decoder = nn.Sequential(
UnFlatten(),
nn.ConvTranspose2d(h_dim, 16, kernel_size=4, stride=1),
nn.ReLU(),
nn.ConvTranspose2d(16, 8, kernel_size=2, stride=2),
nn.ReLU(),
nn.ConvTranspose2d(8, 4, kernel_size=2, stride=2),
nn.Sigmoid(),
)
def reparameterize(self, mu, logvar):
std = torch.exp(0.5*logvar)
eps = torch.randn_like(std)
z = mu + eps*std
return z
def bottleneck(self, h):
mu, logvar = self.fc1(h), self.fc2(h)
z = self.reparameterize(mu, logvar)
return z, mu, logvar
def encode(self, x):
x = x.view(-1, 1, 32,32)
h = self.encoder(x)
z, mu, logvar = self.bottleneck(h)
return z, mu, logvar
def decode(self, z):
z = self.fc3(z)
z = self.decoder(z)
return z.view(-1, 1, 32,32)
def forward(self, x):
z, mu, logvar = self.encode(x)
z = self.decode(z)
return z, mu, logvar
pacs_alex_fnet = FNet_Alex_PACS(4096, 1024)
checkpoint = torch.load('../Models/alex_fnet.pt')
pacs_alex_fnet.load_state_dict(checkpoint['model_state_dict'])
pacs_alex_fnet = pacs_alex_fnet.to(dev)
layers = []
layers.append(nn.Linear(FEATURE_DIM, CLASSES))
classifier = torch.nn.Sequential(*layers).to(dev)
CELoss = nn.CrossEntropyLoss()
classifier = classifier.to(dev)
data_transforms = transforms.Compose([transforms.RandomResizedCrop(size=IMAGE_SIZE), transforms.ToTensor()] )
ds = DGdata(".", IMAGE_SIZE, [src_path], transform=data_transforms)
dataloader = DataLoader(ds, batch_size=64, shuffle=True, num_workers = 4)
pacs_alex_fnet.eval()
opt = torch.optim.Adam(classifier.parameters(), lr=0.003)
for epoch in range(30):
step_wise_loss = []
step_wise_accuracy = []
for image_batch, labels in (dataloader):
image_batch = image_batch.float()
if dev is not None:
image_batch, labels = image_batch.to(dev), labels.to(dev)
# zero the parameter gradients
opt.zero_grad()
z = pacs_alex_fnet(image_batch).to(dev)
pred = classifier(z)
loss = CELoss(pred, labels)
accuracy = (pred.argmax(dim=1) == labels).float().sum()/pred.shape[0]
loss.backward()
opt.step()
step_wise_loss.append(loss.detach().cpu().numpy())
step_wise_accuracy.append(accuracy.detach().cpu().numpy())
print("Epoch " + str(epoch) + " Loss " + str(np.mean(step_wise_loss)) + " Accuracy " + str(np.mean(step_wise_accuracy)))
vae = VAE_PACS_Alex().to(dev)
VAEoptim = LARS(torch.optim.SGD(vae.parameters(), lr=0.005))
dataloader_vae = DataLoader(ds, batch_size=64, shuffle=True, num_workers = 4)
#modified loss
def loss_function(recon_x, x, mu, logvar):
l2 = F.mse_loss(recon_x, x.view(-1, 1, 32, 32), reduction='mean')
KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
l1 = F.l1_loss(recon_x, x.view(-1, 1, 32, 32), reduction='mean')
return l1 + l2 + KLD
def trainVAE(epoch):
vae.train()
train_loss = 0
print(epoch)
for batch_idx, (image_batch, _) in enumerate(dataloader_vae):
image_batch = image_batch.float()
image_batch = image_batch.to(dev)
VAEoptim.zero_grad()
h = pacs_alex_fnet(image_batch).to(dev)
#print(h.shape)
h = h.view(-1, 1, 32,32)
#print(h.shape)
h=h.detach()
recon_batch, mu, logvar = vae(h)
loss = loss_function(recon_batch, h, mu, logvar)
loss.backward()
train_loss += loss.item()
VAEoptim.step()
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(dataloader_vae.dataset)))
for epoch in range(1, 350):
trainVAE(epoch)
if (epoch)%10 == 0:
torch.save({'epoch' : epoch,
'model_state_dict': vae.state_dict(),
'optimizer_state_dict': VAEoptim.state_dict()
}, CHECKPOINT_DIR+"VAEepoch_pacs_alex_"+str(epoch)+".pt")
############################################ inference - target projection ##############################################################
vae.eval()
data_transforms = transforms.Compose([transforms.RandomResizedCrop(size=IMAGE_SIZE), transforms.ToTensor()] )
test_data = DGdata(".", IMAGE_SIZE, [target_path], transform=data_transforms)
test_dataloader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=True, num_workers = 4)
runs = 5
accuracy_per_run = []
for run in range(5):
print('run:',run)
step_wise_accuracy = []
for image_batch, labels in (test_dataloader):
image_batch = image_batch.float()
if dev is not None:
image_batch, labels = image_batch.to(dev), labels.to(dev)
h = pacs_alex_fnet(image_batch).to(dev)
h = h.detach()
batches = int(len(image_batch)/1)
for batch in (range(batches)):
lbl = labels[batch*1:(batch+1) * 1]
x_real = h[batch*1:(batch+1) * 1]
no_1hot = lbl
lbl = F.one_hot(lbl, CLASSES).float()
zparam = torch.randn(1, 64).to(dev)
zparam = zparam.detach().requires_grad_(True)
zoptim = LARS(torch.optim.SGD([zparam], lr=beta,momentum=0.9, nesterov=True))
Uparam = []
L_s = []
for itr in range(0, M): ##projection
zoptim.zero_grad()
xhat = vae.decode(zparam).to(dev)
xhat = xhat.view(1, FEATURE_DIM)
x_real = x_real.view(1, FEATURE_DIM)
xhat = F.normalize(xhat, dim=1)
x_real = F.normalize(x_real, dim=1)
xhat = xhat.view(FEATURE_DIM)
x_real = x_real.view(FEATURE_DIM)
fnetloss = 1 - torch.dot(xhat,x_real)
fnetloss.backward()
zoptim.step()
l = fnetloss.detach().cpu().numpy()
u_param = zparam.detach().cpu().numpy()
L_s.append(l)
Uparam.append(u_param)
L_s = np.asarray(L_s)
Uparam = np.asarray(Uparam)
smooth_L_s = np.cumsum(np.insert(L_s, 0, 0))
s_vec = (smooth_L_s[W:] - smooth_L_s[:-W]) / W
double_derivative=[]
s_len=len(s_vec)
for i in range(1,s_len-1):
double_derivative.append(s_vec[i+1] + s_vec[i-1] - 2 * s_vec[i])
double_derivative=np.asarray(double_derivative)
zstar = torch.from_numpy(Uparam[np.argmax(double_derivative)])
z_in = vae.decode(zstar.to(dev))
z_in = z_in.view(-1, FEATURE_DIM)
pred = classifier(z_in.to(dev))
accuracy = (pred.argmax(dim=1) == no_1hot).float().sum()/pred.shape[0]
step_wise_accuracy.append(accuracy.detach().cpu().numpy())
print(np.mean(step_wise_accuracy))
accuracy_per_run.append(np.mean(step_wise_accuracy))
print(np.mean(accuracy_per_run))