forked from thejat/dynamic-network-growth-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments_base.py
82 lines (69 loc) · 3.1 KB
/
experiments_base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os, matplotlib
if os.environ.get('DISPLAY','') == '':
print('no display found. Using non-interactive Agg backend')
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
from graph_generators import generate_graph_sequence, add_noise, graph_stats_fixed_group
from graph_estimators import estimate_lazy, estimate_bernoulli
import time, pickle, os, math
#helper functions
def localtime():
return '_'.join([str(x) for x in time.localtime()[2:5]])
def estimate_multiple_times(params,GT,glog=None):
if params['dynamic']=='lazy':
estimator = estimate_lazy
elif params['dynamic']=='bernoulli':
estimator = estimate_bernoulli
else:
estimator = None
assert estimator is not None
estimates_dict = {}
for t in params['estimation_indices']:
print(" Estimating on sequence of length: ",t, " starting at time ", time.time()-params['start_time'])
estimates_dict[t] = estimator(params,GT[:t],glog)
return estimates_dict
def monte_carlo(params):
np.random.seed()
#Get graph sequence
# print("Generate data: Monte Carlo Run # ",mcrun+1, " of ",params['n_mcruns'],' starting: ',time.time() - params['start_time'])
GT = generate_graph_sequence(params)
glog = graph_stats_fixed_group(params,GT)
GTnoisy = GT
if params['noisy_edges'] is True:
GTnoisy = add_noise(GT)
#Estimate parameters on each of the graphs at the given time indices
# print("Estimate: Monte Carlo Run # ",mcrun+1, " of ",params['n_mcruns'],' starting: ',time.time() - params['start_time'])
log = estimate_multiple_times(params,GTnoisy,glog)
print("\t Run funish time:", time.time()-params['start_time'])
return [log,glog]
def save_data(logs_glogs,params):
params['end_time_delta'] = time.time() - params['start_time']
fname = './output/pickles/log_'+params['dynamic']+'_n'+str(params['n'])+'_k'+str(params['k'])
pickle.dump({'log':[x for x,y in logs_glogs],'glog':[y for x,y in logs_glogs],'params':params},open(fname+'_'+localtime()+'.pkl','wb'))
print('Experiment end time:', params['end_time_delta'])
def get_params():
params = {}
params['dynamic'] = 'bernoulli'
params['n'] = 100 # size of the graph
params['Mutrue'] = np.array([[.4,.6],[.6,.4]])# [bernoulli]
params['Wtrue'] = np.array([[.4,.2],[.2,.4]])
params['k'] = params['Wtrue'].shape[0] # number of communities
params['total_time'] = 32 # power of 2, number of additional graph snapshots
params['nprocesses'] = 10
params['n_mcruns'] = params['nprocesses'] # number of monte carlo runs potentially in parallel [12 cores]
params['estimation_indices'] = [int(math.pow(2,i))+1 for i in range(1,int(math.log2(params['total_time']))+1)]
assert min(params['estimation_indices']) > 1
params['xitrue'] = .5 # [lazy]
params['ngridpoints'] = 21 # grid search parameter
params['start_time'] = time.time()
params['unify_method'] = 'UnifyCM' # 'UnifyLP' # 'Spectral-Mean'
params['only_unify'] = False
params['compare_unify'] = False
params['debug'] = False
params['noisy_edges'] = False
params['spectral_adversarial'] = True
params['minority_pct_ub'] = 0.2
params['with_majority_dynamics'] = False
return params