forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pipeline-hetero-binning-multiclass.py
142 lines (122 loc) · 5.6 KB
/
pipeline-hetero-binning-multiclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
from pipeline.backend.pipeline import PipeLine
from pipeline.component import DataTransform
from pipeline.component import HeteroFeatureBinning
from pipeline.component import Intersection
from pipeline.component import Reader
from pipeline.interface import Data
from pipeline.interface import Model
from pipeline.utils.tools import load_job_config
def main(config="../../config.yaml", namespace=""):
# obtain config
if isinstance(config, str):
config = load_job_config(config)
parties = config.parties
guest = parties.guest[0]
host = parties.host[0]
guest_train_data = {"name": "vehicle_scale_hetero_guest", "namespace": f"experiment{namespace}"}
guest_validate_data = {"name": "vehicle_scale_hetero_guest", "namespace": f"experiment{namespace}"}
host_train_data = {"name": "vehicle_scale_hetero_host", "namespace": f"experiment{namespace}"}
host_validate_data = {"name": "vehicle_scale_hetero_host", "namespace": f"experiment{namespace}"}
pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host)
data_transform_0, data_transform_1 = DataTransform(name="data_transform_0"), DataTransform(name='data_transform_1')
reader_0, reader_1 = Reader(name="reader_0"), Reader(name='reader_1')
reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
data_transform_0.get_party_instance(
role='guest', party_id=guest).component_param(
with_label=True, output_format="dense")
data_transform_0.get_party_instance(
role='host', party_id=host).component_param(
with_label=False, output_format="dense")
reader_1.get_party_instance(role='guest', party_id=guest).component_param(table=guest_validate_data)
reader_1.get_party_instance(role='host', party_id=host).component_param(table=host_validate_data)
data_transform_1.get_party_instance(
role='guest', party_id=guest).component_param(
with_label=True, output_format="dense")
data_transform_1.get_party_instance(
role='host', party_id=host).component_param(
with_label=True, output_format="dense")
intersection_0 = Intersection(name="intersection_0")
intersection_1 = Intersection(name="intersection_1")
param = {
"method": "quantile",
"optimal_binning_param": {
"metric_method": "gini",
"min_bin_pct": 0.05,
"max_bin_pct": 0.8,
"init_bucket_method": "quantile",
"init_bin_nums": 100,
"mixture": True
},
"compress_thres": 10000,
"head_size": 10000,
"error": 0.001,
"bin_num": 10,
"bin_indexes": -1,
"bin_names": None,
"category_names": None,
"adjustment_factor": 0.5,
"local_only": False,
"transform_param": {
"transform_cols": -1,
"transform_names": None,
"transform_type": "bin_num"
}
}
hetero_feature_binning_0 = HeteroFeatureBinning(name="hetero_feature_binning_0", **param)
hetero_feature_binning_0.get_party_instance(
role="guest", party_id=guest).component_param(category_indexes=[0, 1, 2])
hetero_feature_binning_1 = HeteroFeatureBinning(name='hetero_feature_binning_1')
pipeline.add_component(reader_0)
pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
pipeline.add_component(reader_1)
pipeline.add_component(
data_transform_1, data=Data(
data=reader_1.output.data), model=Model(
data_transform_0.output.model))
pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
pipeline.add_component(intersection_1, data=Data(data=data_transform_1.output.data))
pipeline.add_component(hetero_feature_binning_0, data=Data(data=intersection_0.output.data))
pipeline.add_component(hetero_feature_binning_1, data=Data(data=intersection_1.output.data),
model=Model(hetero_feature_binning_0.output.model))
pipeline.compile()
pipeline.fit()
# predict
# deploy required components
pipeline.deploy_component([data_transform_0, intersection_0, hetero_feature_binning_0])
predict_pipeline = PipeLine()
# add data reader onto predict pipeline
predict_pipeline.add_component(reader_1)
# add selected components from train pipeline onto predict pipeline
# specify data source
predict_pipeline.add_component(
pipeline, data=Data(
predict_input={
pipeline.data_transform_0.input.data: reader_1.output.data}))
# run predict model
predict_pipeline.predict()
if __name__ == "__main__":
parser = argparse.ArgumentParser("PIPELINE DEMO")
parser.add_argument("-config", type=str,
help="config file")
args = parser.parse_args()
if args.config is not None:
main(args.config)
else:
main()