forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pipeline-hetero-binning-skip-statistic.py
134 lines (115 loc) · 5.53 KB
/
pipeline-hetero-binning-skip-statistic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
from pipeline.backend.pipeline import PipeLine
from pipeline.component import DataTransform
from pipeline.component import HeteroFeatureBinning
from pipeline.component import Intersection
from pipeline.component import OneHotEncoder
from pipeline.component import Reader
from pipeline.interface import Data, Model
from pipeline.utils.tools import load_job_config
def main(config="../../config.yaml", namespace=""):
# obtain config
if isinstance(config, str):
config = load_job_config(config)
parties = config.parties
guest = parties.guest[0]
host = parties.host[0]
guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}
guest_eval_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
host_eval_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}
# initialize pipeline
pipeline = PipeLine()
# set job initiator
pipeline.set_initiator(role='guest', party_id=guest)
pipeline.set_roles(guest=guest, host=host)
# define Reader components to read in data
reader_0 = Reader(name="reader_0")
# configure Reader for guest
reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
# configure Reader for host
reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
reader_1 = Reader(name="reader_1")
reader_1.get_party_instance(role='guest', party_id=guest).component_param(table=guest_eval_data)
reader_1.get_party_instance(role='host', party_id=host).component_param(table=host_eval_data)
# define DataTransform components
data_transform_0 = DataTransform(name="data_transform_0") # start component numbering at 0
data_transform_1 = DataTransform(name="data_transform_1")
# get DataTransform party instance of guest
data_transform_0_guest_party_instance = data_transform_0.get_party_instance(role='guest', party_id=guest)
# configure DataTransform for guest
data_transform_0_guest_party_instance.component_param(with_label=True, output_format="dense")
# get and configure DataTransform party instance of host
data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)
# define Intersection components
intersection_0 = Intersection(name="intersection_0")
intersection_1 = Intersection(name="intersection_1")
param = {
"method": "quantile",
"compress_thres": 10000,
"head_size": 10000,
"error": 0.001,
"bin_num": 10,
"bin_indexes": -1,
"bin_names": None,
"category_indexes": None,
"category_names": None,
"adjustment_factor": 0.5,
"local_only": False,
"skip_static": True,
"transform_param": {
"transform_cols": -1,
"transform_names": None,
"transform_type": "bin_num"
}
}
hetero_feature_binning_0 = HeteroFeatureBinning(name="hetero_feature_binning_0", **param)
hetero_feature_binning_1 = HeteroFeatureBinning(name='hetero_feature_binning_1')
one_hot_encoder_0 = OneHotEncoder(name='one_hot_encoder_0',
transform_col_indexes=-1,
transform_col_names=None,
need_run=True)
# add components to pipeline, in order of task execution
pipeline.add_component(reader_0)
pipeline.add_component(reader_1)
pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
# set data_transform_1 to replicate model from data_transform_0
pipeline.add_component(
data_transform_1, data=Data(
data=reader_1.output.data), model=Model(
data_transform_0.output.model))
# set data input sources of intersection components
pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
pipeline.add_component(intersection_1, data=Data(data=data_transform_1.output.data))
# set train & validate data of hetero_lr_0 component
pipeline.add_component(hetero_feature_binning_0, data=Data(data=intersection_0.output.data))
pipeline.add_component(hetero_feature_binning_1, data=Data(data=intersection_1.output.data),
model=Model(hetero_feature_binning_0.output.model))
pipeline.add_component(one_hot_encoder_0, data=Data(data=hetero_feature_binning_0.output.data))
pipeline.compile()
pipeline.fit()
# common_tools.prettify(pipeline.get_component("hetero_feature_binning_0").get_summary())
if __name__ == "__main__":
parser = argparse.ArgumentParser("PIPELINE DEMO")
parser.add_argument("-config", type=str,
help="config file")
args = parser.parse_args()
if args.config is not None:
main(args.config)
else:
main()