forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_selection_param.py
567 lines (473 loc) · 24 KB
/
feature_selection_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
from federatedml.param.base_param import BaseParam, deprecated_param
from federatedml.util import consts
class UniqueValueParam(BaseParam):
"""
Use the difference between max-value and min-value to judge.
Parameters
----------
eps : float, default: 1e-5
The column(s) will be filtered if its difference is smaller than eps.
"""
def __init__(self, eps=1e-5):
self.eps = eps
def check(self):
descr = "Unique value param's"
self.check_positive_number(self.eps, descr)
return True
class IVValueSelectionParam(BaseParam):
"""
Use information values to select features.
Parameters
----------
value_threshold: float, default: 1.0
Used if iv_value_thres method is used in feature selection.
host_thresholds: List of float or None, default: None
Set threshold for different host. If None, use same threshold as guest. If provided, the order should map with
the host id setting.
"""
def __init__(self, value_threshold=0.0, host_thresholds=None, local_only=False):
super().__init__()
self.value_threshold = value_threshold
self.host_thresholds = host_thresholds
self.local_only = local_only
def check(self):
if not isinstance(self.value_threshold, (float, int)):
raise ValueError("IV selection param's value_threshold should be float or int")
if self.host_thresholds is not None:
if not isinstance(self.host_thresholds, list):
raise ValueError("IV selection param's host_threshold should be list or None")
if not isinstance(self.local_only, bool):
raise ValueError("IV selection param's local_only should be bool")
return True
class IVPercentileSelectionParam(BaseParam):
"""
Use information values to select features.
Parameters
----------
percentile_threshold: float
0 <= percentile_threshold <= 1.0, default: 1.0, Percentile threshold for iv_percentile method
"""
def __init__(self, percentile_threshold=1.0, local_only=False):
super().__init__()
self.percentile_threshold = percentile_threshold
self.local_only = local_only
def check(self):
descr = "IV selection param's"
if self.percentile_threshold != 0 or self.percentile_threshold != 1:
self.check_decimal_float(self.percentile_threshold, descr)
self.check_boolean(self.local_only, descr)
return True
class IVTopKParam(BaseParam):
"""
Use information values to select features.
Parameters
----------
k: int
should be greater than 0, default: 10, Percentile threshold for iv_percentile method
"""
def __init__(self, k=10, local_only=False):
super().__init__()
self.k = k
self.local_only = local_only
def check(self):
descr = "IV selection param's"
self.check_positive_integer(self.k, descr)
self.check_boolean(self.local_only, descr)
return True
class VarianceOfCoeSelectionParam(BaseParam):
"""
Use coefficient of variation to select features. When judging, the absolute value will be used.
Parameters
----------
value_threshold: float, default: 1.0
Used if coefficient_of_variation_value_thres method is used in feature selection. Filter those
columns who has smaller coefficient of variance than the threshold.
"""
def __init__(self, value_threshold=1.0):
self.value_threshold = value_threshold
def check(self):
descr = "Coff of Variances param's"
self.check_positive_number(self.value_threshold, descr)
return True
class OutlierColsSelectionParam(BaseParam):
"""
Given percentile and threshold. Judge if this quantile point is larger than threshold. Filter those larger ones.
Parameters
----------
percentile: float, [0., 1.] default: 1.0
The percentile points to compare.
upper_threshold: float, default: 1.0
Percentile threshold for coefficient_of_variation_percentile method
"""
def __init__(self, percentile=1.0, upper_threshold=1.0):
self.percentile = percentile
self.upper_threshold = upper_threshold
def check(self):
descr = "Outlier Filter param's"
self.check_decimal_float(self.percentile, descr)
self.check_defined_type(self.upper_threshold, descr, ['float', 'int'])
return True
class CommonFilterParam(BaseParam):
"""
All of the following parameters can set with a single value or a list of those values.
When setting one single value, it means using only one metric to filter while
a list represent for using multiple metrics.
Please note that if some of the following values has been set as list, all of them
should have same length. Otherwise, error will be raised. And if there exist a list
type parameter, the metrics should be in list type.
Parameters
----------
metrics: str or list, default: depends on the specific filter
Indicate what metrics are used in this filter
filter_type: str, default: threshold
Should be one of "threshold", "top_k" or "top_percentile"
take_high: bool, default: True
When filtering, taking highest values or not.
threshold: float or int, default: 1
If filter type is threshold, this is the threshold value.
If it is "top_k", this is the k value.
If it is top_percentile, this is the percentile threshold.
host_thresholds: List of float or List of List of float or None, default: None
Set threshold for different host. If None, use same threshold as guest. If provided, the order should map with
the host id setting.
select_federated: bool, default: True
Whether select federated with other parties or based on local variables
"""
def __init__(self, metrics, filter_type='threshold', take_high=True, threshold=1,
host_thresholds=None, select_federated=True):
super().__init__()
self.metrics = metrics
self.filter_type = filter_type
self.take_high = take_high
self.threshold = threshold
self.host_thresholds = host_thresholds
self.select_federated = select_federated
def check(self):
self._convert_to_list(param_names=["filter_type", "take_high",
"threshold", "select_federated"])
for v in self.filter_type:
if v not in ["threshold", "top_k", "top_percentile"]:
raise ValueError('filter_type should be one of '
'"threshold", "top_k", "top_percentile"')
descr = "hetero feature selection param's"
for v in self.take_high:
self.check_boolean(v, descr)
for idx, v in enumerate(self.threshold):
if self.filter_type[idx] == "threshold":
if not isinstance(v, (float, int)):
raise ValueError(descr + f"{v} should be a float or int")
elif self.filter_type[idx] == 'top_k':
self.check_positive_integer(v, descr)
else:
if not (v == 0 or v == 1):
self.check_decimal_float(v, descr)
if self.host_thresholds is not None:
if not isinstance(self.host_thresholds, list):
self.host_thresholds = [self.host_thresholds]
# raise ValueError("selection param's host_thresholds should be list or None")
assert isinstance(self.select_federated, list)
for v in self.select_federated:
self.check_boolean(v, descr)
def _convert_to_list(self, param_names):
if not isinstance(self.metrics, list):
for value_name in param_names:
v = getattr(self, value_name)
if isinstance(v, list):
raise ValueError(f"{value_name}: {v} should not be a list when "
f"metrics: {self.metrics} is not a list")
setattr(self, value_name, [v])
setattr(self, "metrics", [self.metrics])
else:
expected_length = len(self.metrics)
for value_name in param_names:
v = getattr(self, value_name)
if isinstance(v, list):
if len(v) != expected_length:
raise ValueError(f"The parameter {v} should have same length "
f"with metrics")
else:
new_v = [v] * expected_length
setattr(self, value_name, new_v)
class IVFilterParam(CommonFilterParam):
"""
Parameters
----------
mul_class_merge_type: str or list, default: "average"
Indicate how to merge multi-class iv results. Support "average", "min" and "max".
"""
def __init__(self, filter_type='threshold', threshold=1,
host_thresholds=None, select_federated=True, mul_class_merge_type="average"):
super().__init__(metrics='iv', filter_type=filter_type, take_high=True, threshold=threshold,
host_thresholds=host_thresholds, select_federated=select_federated)
self.mul_class_merge_type = mul_class_merge_type
def check(self):
super(IVFilterParam, self).check()
self._convert_to_list(param_names=["mul_class_merge_type"])
class CorrelationFilterParam(BaseParam):
"""
This filter follow this specific rules:
1. Sort all the columns from high to low based on specific metric, eg. iv.
2. Traverse each sorted column. If there exists other columns with whom the
absolute values of correlation are larger than threshold, they will be filtered.
Parameters
----------
sort_metric: str, default: iv
Specify which metric to be used to sort features.
threshold: float or int, default: 0.1
Correlation threshold
select_federated: bool, default: True
Whether select federated with other parties or based on local variables
"""
def __init__(self, sort_metric='iv', threshold=0.1, select_federated=True):
super().__init__()
self.sort_metric = sort_metric
self.threshold = threshold
self.select_federated = select_federated
def check(self):
descr = "Correlation Filter param's"
self.sort_metric = self.sort_metric.lower()
support_metrics = ['iv']
if self.sort_metric not in support_metrics:
raise ValueError(f"sort_metric in Correlation Filter should be one of {support_metrics}")
self.check_positive_number(self.threshold, descr)
class PercentageValueParam(BaseParam):
"""
Filter the columns that have a value that exceeds a certain percentage.
Parameters
----------
upper_pct: float, [0.1, 1.], default: 1.0
The upper percentage threshold for filtering, upper_pct should not be less than 0.1.
"""
def __init__(self, upper_pct=1.0):
super().__init__()
self.upper_pct = upper_pct
def check(self):
descr = "Percentage Filter param's"
if self.upper_pct not in [0, 1]:
self.check_decimal_float(self.upper_pct, descr)
if self.upper_pct < consts.PERCENTAGE_VALUE_LIMIT:
raise ValueError(descr + f" {self.upper_pct} not supported,"
f" should not be smaller than {consts.PERCENTAGE_VALUE_LIMIT}")
return True
class ManuallyFilterParam(BaseParam):
"""
Specified columns that need to be filtered. If exist, it will be filtered directly, otherwise, ignore it.
Both Filter_out or left parameters only works for this specific filter. For instances, if you set some columns left
in this filter but those columns are filtered by other filters, those columns will NOT left in final.
Please note that (left_col_indexes & left_col_names) cannot use with (filter_out_indexes & filter_out_names) simultaneously.
Parameters
----------
filter_out_indexes: list of int, default: None
Specify columns' indexes to be filtered out
Note tha columns specified by `filter_out_indexes` and `filter_out_names` will be combined.
filter_out_names : list of string, default: None
Specify columns' names to be filtered out
Note tha columns specified by `filter_out_indexes` and `filter_out_names` will be combined.
left_col_indexes: list of int, default: None
Specify left_col_index
Note tha columns specified by `left_col_indexes` and `left_col_names` will be combined.
left_col_names: list of string, default: None
Specify left col names
Note tha columns specified by `left_col_indexes` and `left_col_names` will be combined.
"""
def __init__(self, filter_out_indexes=None, filter_out_names=None, left_col_indexes=None,
left_col_names=None):
super().__init__()
self.filter_out_indexes = filter_out_indexes
self.filter_out_names = filter_out_names
self.left_col_indexes = left_col_indexes
self.left_col_names = left_col_names
def check(self):
descr = "Manually Filter param's"
self.check_defined_type(self.filter_out_indexes, descr, ['list', 'NoneType'])
self.check_defined_type(self.filter_out_names, descr, ['list', 'NoneType'])
self.check_defined_type(self.left_col_indexes, descr, ['list', 'NoneType'])
self.check_defined_type(self.left_col_names, descr, ['list', 'NoneType'])
if (self.filter_out_indexes or self.filter_out_names) is not None and \
(self.left_col_names or self.left_col_indexes) is not None:
raise ValueError("(left_col_indexes & left_col_names) cannot use with"
" (filter_out_indexes & filter_out_names) simultaneously")
return True
deprecated_param_list = ["iv_value_param", "iv_percentile_param",
"iv_top_k_param", "variance_coe_param", "unique_param",
"outlier_param"]
@deprecated_param(*deprecated_param_list)
class FeatureSelectionParam(BaseParam):
"""
Define the feature selection parameters.
Parameters
----------
select_col_indexes: list or int, default: -1
Specify which columns need to calculated. -1 represent for all columns.
Note tha columns specified by `select_col_indexes` and `select_names` will be combined.
select_names : list of string, default: []
Specify which columns need to calculated. Each element in the list represent for a column name in header.
Note tha columns specified by `select_col_indexes` and `select_names` will be combined.
filter_methods: list of ["manually", "iv_filter", "statistic_filter", "psi_filter",
“hetero_sbt_filter", "homo_sbt_filter", "hetero_fast_sbt_filter", "percentage_value",
"vif_filter", "correlation_filter"], default: ["manually"].
The following methods will be deprecated in future version:
"unique_value", "iv_value_thres", "iv_percentile",
"coefficient_of_variation_value_thres", "outlier_cols"
Specify the filter methods used in feature selection. The orders of filter used is depended on this list.
Please be notified that, if a percentile method is used after some certain filter method,
the percentile represent for the ratio of rest features.
e.g. If you have 10 features at the beginning. After first filter method, you have 8 rest. Then, you want
top 80% highest iv feature. Here, we will choose floor(0.8 * 8) = 6 features instead of 8.
unique_param: UniqueValueParam
filter the columns if all values in this feature is the same
iv_value_param: IVValueSelectionParam
Use information value to filter columns. If this method is set, a float threshold need to be provided.
Filter those columns whose iv is smaller than threshold. Will be deprecated in the future.
iv_percentile_param: IVPercentileSelectionParam
Use information value to filter columns. If this method is set, a float ratio threshold
need to be provided. Pick floor(ratio * feature_num) features with higher iv. If multiple features around
the threshold are same, all those columns will be keep. Will be deprecated in the future.
variance_coe_param: VarianceOfCoeSelectionParam
Use coefficient of variation to judge whether filtered or not.
Will be deprecated in the future.
outlier_param: OutlierColsSelectionParam
Filter columns whose certain percentile value is larger than a threshold.
Will be deprecated in the future.
percentage_value_param: PercentageValueParam
Filter the columns that have a value that exceeds a certain percentage.
iv_param: IVFilterParam
Setting how to filter base on iv. It support take high mode only. All of "threshold",
"top_k" and "top_percentile" are accepted. Check more details in CommonFilterParam. To
use this filter, hetero-feature-binning module has to be provided.
statistic_param: CommonFilterParam
Setting how to filter base on statistic values. All of "threshold",
"top_k" and "top_percentile" are accepted. Check more details in CommonFilterParam.
To use this filter, data_statistic module has to be provided.
psi_param: CommonFilterParam
Setting how to filter base on psi values. All of "threshold",
"top_k" and "top_percentile" are accepted. Its take_high properties should be False
to choose lower psi features. Check more details in CommonFilterParam.
To use this filter, data_statistic module has to be provided.
use_anonymous: bool, default False
whether to interpret 'select_names' as anonymous names.
need_run: bool, default True
Indicate if this module needed to be run
"""
def __init__(self, select_col_indexes=-1, select_names=None, filter_methods=None,
unique_param=UniqueValueParam(),
iv_value_param=IVValueSelectionParam(),
iv_percentile_param=IVPercentileSelectionParam(),
iv_top_k_param=IVTopKParam(),
variance_coe_param=VarianceOfCoeSelectionParam(),
outlier_param=OutlierColsSelectionParam(),
manually_param=ManuallyFilterParam(),
percentage_value_param=PercentageValueParam(),
iv_param=IVFilterParam(),
statistic_param=CommonFilterParam(metrics=consts.MEAN),
psi_param=CommonFilterParam(metrics=consts.PSI,
take_high=False),
vif_param=CommonFilterParam(metrics=consts.VIF,
threshold=5.0,
take_high=False),
sbt_param=CommonFilterParam(metrics=consts.FEATURE_IMPORTANCE),
correlation_param=CorrelationFilterParam(),
use_anonymous=False,
need_run=True
):
super(FeatureSelectionParam, self).__init__()
self.correlation_param = correlation_param
self.vif_param = vif_param
self.select_col_indexes = select_col_indexes
if select_names is None:
self.select_names = []
else:
self.select_names = select_names
if filter_methods is None:
self.filter_methods = [consts.MANUALLY_FILTER]
else:
self.filter_methods = filter_methods
# deprecate in the future
self.unique_param = copy.deepcopy(unique_param)
self.iv_value_param = copy.deepcopy(iv_value_param)
self.iv_percentile_param = copy.deepcopy(iv_percentile_param)
self.iv_top_k_param = copy.deepcopy(iv_top_k_param)
self.variance_coe_param = copy.deepcopy(variance_coe_param)
self.outlier_param = copy.deepcopy(outlier_param)
self.percentage_value_param = copy.deepcopy(percentage_value_param)
self.manually_param = copy.deepcopy(manually_param)
self.iv_param = copy.deepcopy(iv_param)
self.statistic_param = copy.deepcopy(statistic_param)
self.psi_param = copy.deepcopy(psi_param)
self.sbt_param = copy.deepcopy(sbt_param)
self.need_run = need_run
self.use_anonymous = use_anonymous
def check(self):
descr = "hetero feature selection param's"
self.check_defined_type(self.filter_methods, descr, ['list'])
for idx, method in enumerate(self.filter_methods):
method = method.lower()
self.check_valid_value(method, descr, [consts.UNIQUE_VALUE, consts.IV_VALUE_THRES, consts.IV_PERCENTILE,
consts.COEFFICIENT_OF_VARIATION_VALUE_THRES, consts.OUTLIER_COLS,
consts.MANUALLY_FILTER, consts.PERCENTAGE_VALUE,
consts.IV_FILTER, consts.STATISTIC_FILTER, consts.IV_TOP_K,
consts.PSI_FILTER, consts.HETERO_SBT_FILTER,
consts.HOMO_SBT_FILTER, consts.HETERO_FAST_SBT_FILTER,
consts.VIF_FILTER, consts.CORRELATION_FILTER])
self.filter_methods[idx] = method
self.check_defined_type(self.select_col_indexes, descr, ['list', 'int'])
self.unique_param.check()
self.iv_value_param.check()
self.iv_percentile_param.check()
self.iv_top_k_param.check()
self.variance_coe_param.check()
self.outlier_param.check()
self.manually_param.check()
self.percentage_value_param.check()
self.iv_param.check()
for th in self.iv_param.take_high:
if not th:
raise ValueError("Iv filter should take higher iv features")
for m in self.iv_param.metrics:
if m != consts.IV:
raise ValueError("For iv filter, metrics should be 'iv'")
self.statistic_param.check()
self.psi_param.check()
for th in self.psi_param.take_high:
if th:
raise ValueError("PSI filter should take lower psi features")
for m in self.psi_param.metrics:
if m != consts.PSI:
raise ValueError("For psi filter, metrics should be 'psi'")
self.sbt_param.check()
for th in self.sbt_param.take_high:
if not th:
raise ValueError("SBT filter should take higher feature_importance features")
for m in self.sbt_param.metrics:
if m != consts.FEATURE_IMPORTANCE:
raise ValueError("For SBT filter, metrics should be 'feature_importance'")
self.vif_param.check()
for m in self.vif_param.metrics:
if m != consts.VIF:
raise ValueError("For VIF filter, metrics should be 'vif'")
self.correlation_param.check()
self.check_boolean(self.use_anonymous, f"{descr} use_anonymous")
self._warn_to_deprecate_param("iv_value_param", descr, "iv_param")
self._warn_to_deprecate_param("iv_percentile_param", descr, "iv_param")
self._warn_to_deprecate_param("iv_top_k_param", descr, "iv_param")
self._warn_to_deprecate_param("variance_coe_param", descr, "statistic_param")
self._warn_to_deprecate_param("unique_param", descr, "statistic_param")
self._warn_to_deprecate_param("outlier_param", descr, "statistic_param")