forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhomo_nn_param.py
240 lines (209 loc) · 8.2 KB
/
homo_nn_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import typing
from types import SimpleNamespace
from federatedml.param.base_param import BaseParam
from federatedml.param.cross_validation_param import CrossValidationParam
from federatedml.param.predict_param import PredictParam
from federatedml.param.callback_param import CallbackParam
import json
class HomoNNParam(BaseParam):
"""
Parameters used for Homo Neural Network.
Parameters
----------
secure_aggregate : bool
enable secure aggregation or not, defaults to True.
aggregate_every_n_epoch : int
aggregate model every n epoch, defaults to 1.
config_type : {"nn", "keras", "tf"}
config type
nn_define : dict
a dict represents the structure of neural network.
optimizer : str or dict
optimizer method, accept following types:
1. a string, one of "Adadelta", "Adagrad", "Adam", "Adamax", "Nadam", "RMSprop", "SGD"
2. a dict, with a required key-value pair keyed by "optimizer",
with optional key-value pairs such as learning rate.
defaults to "SGD"
loss : str
loss
metrics: str or list of str
metrics
max_iter: int
the maximum iteration for aggregation in training.
batch_size : int
batch size when updating model.
-1 means use all data in a batch. i.e. Not to use mini-batch strategy.
defaults to -1.
early_stop : {'diff', 'weight_diff', 'abs'}
Method used to judge converge or not.
a) diff: Use difference of loss between two iterations to judge whether converge.
b) weight_diff: Use difference between weights of two consecutive iterations
c) abs: Use the absolute value of loss to judge whether converge. i.e. if loss < eps, it is converged.
encode_label : bool
encode label to one_hot.
"""
def __init__(
self,
api_version: int = 0,
secure_aggregate: bool = True,
aggregate_every_n_epoch: int = 1,
config_type: str = "nn",
nn_define: dict = None,
optimizer: typing.Union[str, dict, SimpleNamespace] = "SGD",
loss: str = None,
metrics: typing.Union[str, list] = None,
max_iter: int = 100,
batch_size: int = -1,
early_stop: typing.Union[str, dict, SimpleNamespace] = "diff",
encode_label: bool = False,
predict_param=PredictParam(),
cv_param=CrossValidationParam(),
callback_param=CallbackParam(),
):
super(HomoNNParam, self).__init__()
self.api_version = api_version
self.secure_aggregate = secure_aggregate
self.aggregate_every_n_epoch = aggregate_every_n_epoch
self.config_type = config_type
self.nn_define = nn_define or []
self.encode_label = encode_label
self.batch_size = batch_size
self.max_iter = max_iter
self.early_stop = early_stop
self.metrics = metrics
self.optimizer = optimizer
self.loss = loss
self.predict_param = copy.deepcopy(predict_param)
self.cv_param = copy.deepcopy(cv_param)
self.callback_param = copy.deepcopy(callback_param)
def check(self):
supported_config_type = ["nn", "keras", "pytorch"]
if self.config_type not in supported_config_type:
raise ValueError(f"config_type should be one of {supported_config_type}")
self.early_stop = _parse_early_stop(self.early_stop)
self.metrics = _parse_metrics(self.metrics)
self.optimizer = _parse_optimizer(self.optimizer)
def generate_pb(self):
from federatedml.protobuf.generated import nn_model_meta_pb2
pb = nn_model_meta_pb2.HomoNNParam()
pb.secure_aggregate = self.secure_aggregate
pb.encode_label = self.encode_label
pb.aggregate_every_n_epoch = self.aggregate_every_n_epoch
pb.config_type = self.config_type
if self.config_type == "nn":
for layer in self.nn_define:
pb.nn_define.append(json.dumps(layer))
elif self.config_type == "keras":
pb.nn_define.append(json.dumps(self.nn_define))
elif self.config_type == "pytorch":
for layer in self.nn_define:
pb.nn_define.append(json.dumps(layer))
pb.batch_size = self.batch_size
pb.max_iter = self.max_iter
pb.early_stop.early_stop = self.early_stop.converge_func
pb.early_stop.eps = self.early_stop.eps
for metric in self.metrics:
pb.metrics.append(metric)
pb.optimizer.optimizer = self.optimizer.optimizer
pb.optimizer.args = json.dumps(self.optimizer.kwargs)
pb.loss = self.loss
return pb
def restore_from_pb(self, pb, is_warm_start_mode: bool = False):
self.secure_aggregate = pb.secure_aggregate
self.encode_label = pb.encode_label
self.aggregate_every_n_epoch = pb.aggregate_every_n_epoch
self.config_type = pb.config_type
if self.config_type == "nn":
for layer in pb.nn_define:
self.nn_define.append(json.loads(layer))
elif self.config_type == "keras":
self.nn_define = json.loads(pb.nn_define[0])
elif self.config_type == "pytorch":
for layer in pb.nn_define:
self.nn_define.append(json.loads(layer))
else:
raise ValueError(f"{self.config_type} is not supported")
self.batch_size = pb.batch_size
if not is_warm_start_mode:
self.max_iter = pb.max_iter
self.optimizer = _parse_optimizer(
dict(optimizer=pb.optimizer.optimizer, **json.loads(pb.optimizer.args))
)
self.early_stop = _parse_early_stop(
dict(early_stop=pb.early_stop.early_stop, eps=pb.early_stop.eps)
)
self.metrics = list(pb.metrics)
self.loss = pb.loss
return pb
def _parse_metrics(param):
"""
Examples:
1. "metrics": "Accuracy"
2. "metrics": ["Accuracy"]
"""
if not param:
return []
elif isinstance(param, str):
return [param]
elif isinstance(param, list):
return param
else:
raise ValueError(f"invalid metrics type: {type(param)}")
def _parse_optimizer(param):
"""
Examples:
1. "optimize": "SGD"
2. "optimize": {
"optimizer": "SGD",
"learning_rate": 0.05
}
"""
kwargs = {}
if isinstance(param, str):
return SimpleNamespace(optimizer=param, kwargs=kwargs)
elif isinstance(param, dict):
optimizer = param.get("optimizer", kwargs)
if not optimizer:
raise ValueError(f"optimizer config: {param} invalid")
kwargs = {k: v for k, v in param.items() if k != "optimizer"}
return SimpleNamespace(optimizer=optimizer, kwargs=kwargs)
else:
raise ValueError(f"invalid type for optimize: {type(param)}")
def _parse_early_stop(param):
"""
Examples:
1. "early_stop": "diff"
2. "early_stop": {
"early_stop": "diff",
"eps": 0.0001
}
"""
default_eps = 0.0001
if isinstance(param, str):
return SimpleNamespace(converge_func=param, eps=default_eps)
elif isinstance(param, dict):
early_stop = param.get("early_stop", param.get("converge_func"))
eps = param.get("eps", default_eps)
if not early_stop:
raise ValueError(f"early_stop config: {param} invalid")
return SimpleNamespace(converge_func=early_stop, eps=eps)
else:
raise ValueError(f"invalid type for early_stop: {type(param)}")