forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
label_transform_param.py
70 lines (58 loc) · 2.81 KB
/
label_transform_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from federatedml.param.base_param import BaseParam
from federatedml.util import LOGGER
class LabelTransformParam(BaseParam):
"""
Define label transform param that used in label transform.
Parameters
----------
label_encoder : None or dict, default : None
Specify (label, encoded label) key-value pairs for transforming labels to new values.
e.g. {"Yes": 1, "No": 0};
**new in ver 1.9: during training, input labels not found in `label_encoder` will retain its original value
label_list : None or list, default : None
List all input labels, used for matching types of original keys in label_encoder dict,
length should match key count in label_encoder, e.g. ["Yes", "No"];
**new in ver 1.9: given non-emtpy `label_encoder`, when `label_list` not provided,
module will inference label types from input data
need_run: bool, default: True
Specify whether to run label transform
"""
def __init__(self, label_encoder=None, label_list=None, need_run=True):
super(LabelTransformParam, self).__init__()
self.label_encoder = label_encoder
self.label_list = label_list
self.need_run = need_run
def check(self):
model_param_descr = "label transform param's "
BaseParam.check_boolean(self.need_run, f"{model_param_descr} need run ")
if self.label_encoder is not None:
if not isinstance(self.label_encoder, dict):
raise ValueError(f"{model_param_descr} label_encoder should be dict type")
if len(self.label_encoder) == 0:
self.label_encoder = None
if self.label_list is not None:
if not isinstance(self.label_list, list):
raise ValueError(f"{model_param_descr} label_list should be list type")
if self.label_encoder and self.label_list and len(self.label_list) != len(self.label_encoder.keys()):
raise ValueError(f"label_list's length not matching label_encoder key count.")
if len(self.label_list) == 0:
self.label_list = None
LOGGER.debug("Finish label transformer parameter check!")
return True