forked from FederatedAI/FATE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsqn_param.py
51 lines (43 loc) · 1.77 KB
/
sqn_param.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2019 The FATE Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from federatedml.param.base_param import BaseParam
class StochasticQuasiNewtonParam(BaseParam):
"""
Parameters used for stochastic quasi-newton method.
Parameters
----------
update_interval_L : int, default: 3
Set how many iteration to update hess matrix
memory_M : int, default: 5
Stack size of curvature information, i.e. y_k and s_k in the paper.
sample_size : int, default: 5000
Sample size of data that used to update Hess matrix
"""
def __init__(self, update_interval_L=3, memory_M=5, sample_size=5000, random_seed=None):
super().__init__()
self.update_interval_L = update_interval_L
self.memory_M = memory_M
self.sample_size = sample_size
self.random_seed = random_seed
def check(self):
descr = "hetero sqn param's"
self.check_positive_integer(self.update_interval_L, descr)
self.check_positive_integer(self.memory_M, descr)
self.check_positive_integer(self.sample_size, descr)
if self.random_seed is not None:
self.check_positive_integer(self.random_seed, descr)
return True