-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPupil_2_clusterbased.m
245 lines (212 loc) · 11.1 KB
/
Pupil_2_clusterbased.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
function Pupil_2_clusterbased
% Creates data for cluster based and performs the following stats:
% a) Permutation paired t-test for differences between eA vs. eMA
% b) Permutation paired t-test for differences between tAretr vs. tMAretr
% c) Somehow we need to do the anova for Memory by Generation
%% Paths
clear; clc; close all;
analysis_path = ' ';
data_path = ' ';
raw_mat = ' ';
raw_asc = raw_mat;
% add plugins needed
addpath('/Tools_Nadia/boundedline-pkg-master/boundedline-pkg-master/boundedline');
addpath('/Tools_Nadia/boundedline-pkg-master/boundedline-pkg-master/catuneven');
addpath([analysis_path '/Tools_Nadia/boundedline-pkg-master/boundedline-pkg-master/Inpaint_nans']);
addpath([analysis_path '/Tools_Nadia/boundedline-pkg-master/boundedline-pkg-master/singlepatch']);
addpath([analysis_path '/Tools-master_AU/plotting']);
addpath([analysis_path '/Tools-master_AU/plotting/cbrewer'])
analysis_log = [analysis_path '/analysis_log.txt'];
all_subs_folder = [' '];
ft_defaults;
% File
nBlocks = 24;
subjects = [6 7 8 9 10 11 12 13 14 16 18 19 20 21 22 23 24 25 26 27 28 29 30];
tic;
fileID = fopen(analysis_log, 'wt');
fprintf(fileID, 'Data path: %s*\n\n', data_path);
fprintf(fileID, '*********************\n\n');
fprintf(fileID, 'Creating Grand averages per condition...');
preparation = 0;
%% =============================================
%% PREPARE DATA
%% =============================================
conds = {'eA_2T' 'eMA_2T' 'eM_2T' 'eA' 'eMA' 'eM' 'tAretr' 'tMAretr'}
if preparation == 0 % if the data is not prepared
% Create empty cell arrays for the conditions of interest
for cond = conds
eval([cond{:} ' = cell(length(subjects),1)'])
end
%% Prepare data for cluster based stats
% if already done don't continue
cd(all_subs_folder)
for cond = conds
% Don't continue if already done
cd(all_subs_folder)
i = 1;
for subj = 1:length(subjects)
evoked_folder = [data_path '/evoked_' num2str(subjects(subj))];
load([evoked_folder '/' num2str(subjects(subj), '%0.2d') '_AVG_' cond{:} '_forClust']);
eval([[['all_' cond{:}] '{' num2str(i) '}'] '=avg']')
i = i + 1;
end
eval(['save(''' all_subs_folder 'GA_' cond{:} '_all'', ''all_' cond{:} ''')']);
end
%% Get the eA-eMA differnece
condArray1 = {'eA_2T'}
condArray2 = {'eMA_2T'}
for iDiff = 1:length(condArray1)
for subj = 1:length(subjects)
eval(['cond1 = ' [['all_' condArray1{iDiff}] '{' num2str(subj) '}']]');
eval(['cond2 = ' [['all_' condArray2{iDiff}] '{' num2str(subj) '}']]');
cfg = [];
cfg.operation = 'subtract';
cfg.parameter = 'avg';
eval([['all_' condArray1{iDiff} '_' condArray2{iDiff}] '{' num2str(subj) '}' '= ft_math(cfg, cond1, cond2)']');
end
eval(['save(''' all_subs_folder 'GA_' condArray1{iDiff} '_' condArray2{iDiff} '_all'', ''all_' condArray1{iDiff} '_' condArray2{iDiff} ''')']);
end
% Now for ME at encoding and at retrieval
for main_effect = {'tAenc_2ME', 'tMAenc_2ME', 'tAretr_2ME', 'tMAretr_2ME' 'enc_R_2ME', 'enc_F_2ME', 'retr_R_2ME', 'retr_F_2ME'}
switch main_effect{:}
case 'tAenc_2ME'
eval(['all_' main_effect{:} ' = [all_tAenc_R_2, all_tAenc_F_2]']);
case 'tMAenc_2ME'
eval(['all_' main_effect{:} ' = [all_tMAenc_R_2, all_tMAenc_F_2]']);
case 'tAretr_2ME'
eval(['all_' main_effect{:} ' = [all_tAretr_R_2, all_tAretr_F_2]']);
case 'tMAretr_2ME'
eval(['all_' main_effect{:} ' = [all_tMAretr_R_2, all_tMAretr_F_2]']);
case 'enc_R_2ME'
eval(['all_' main_effect{:} ' = [all_tAenc_R_2, all_tMAenc_R_2]']);
case 'enc_F_2ME'
eval(['all_' main_effect{:} ' = [all_tAenc_F_2, all_tMAenc_F_2]']);
case 'retr_R_2ME'
eval(['all_' main_effect{:} ' = [all_tAretr_R_2, all_tMAretr_R_2]']);
case 'retr_F_2ME'
eval(['all_' main_effect{:} ' = [all_tAretr_F_2, all_tMAretr_F_2]']);
end
eval(['save(''' all_subs_folder 'GA_' main_effect{:} '_all'', ''all_' main_effect{:} ''')']);
end
%% Test for interaction effects as in fieldtrip tutorial:
% Comparing GAdiff11_12 and GAdiff21_22 would be testing an interaction effect.
condArray1 = {'tAenc_R_2', 'tMAenc_R_2', 'tAretr_R_2', 'tMAretr_R_2'}
condArray2 = {'tAenc_F_2', 'tMAenc_F_2', 'tAretr_F_2', 'tMAretr_F_2'}
for iDiff = 1:length(condArray1)
for subj = 1:length(subjects)
eval(['cond1 = ' [['all_' condArray1{iDiff}] '{' num2str(subj) '}']]');
eval(['cond2 = ' [['all_' condArray2{iDiff}] '{' num2str(subj) '}']]');
cfg = [];
cfg.operation = 'subtract';
cfg.parameter = 'avg';
eval([['all_' condArray1{iDiff} '_' condArray2{iDiff}] '{' num2str(subj) '}' '= ft_math(cfg, cond1, cond2)']');
end
eval(['save(''' all_subs_folder 'GA_' condArray1{iDiff} '_' condArray2{iDiff} '_all'', ''all_' condArray1{iDiff} '_' condArray2{iDiff} ''')']);
end
else
%% If the data is already prepared just load it
cd(all_subs_folder)
files = dir('*.mat');
tables = {};
for i = 1:length(files)
load(files(i).name);
end
%% ===============================================
%% GRAND AVERAGE ACROSS SUBJECTS
%% ==============================================
cfg = []
cd(all_subs_folder)
for cond = conds
disp('Rerunning...Grand average')
i = 1;
for subj = 1:length(subjects)
load([all_subs_folder 'GA_' cond{:} '_all'])
eval([' tmp = ' [[['all_' cond{:}] '{' num2str(subj) '}']]]')
eval(['data_' num2str(i) ' = tmp']);
i = i + 1;
end
cfg.keepindividual = 'no';
cfg.parameter = 'avg';
eval(['GA_' cond{:} '_EPR = ft_timelockgrandaverage(cfg,data_1,data_2,data_3,data_4,data_5,data_6,data_7,data_8,data_9,data_10,data_11, data_12, data_13, data_14, data_15, data_16,data_17,data_18, data_19, data_20, data_21, data_22, data_23)']);
eval(['save(''' all_subs_folder 'GA_' cond{:} '_EPR'',''GA_' cond{:} '_EPR'')']);
eval(['clear(''GA_' cond{:} '_EPR'')']);
end
% Grand average for difference wave
cond = {'eA_2T_eMA_2T'}
load([all_subs_folder 'GA_' cond{:} '_all'])
disp('Rerunning...Grand average')
i = 1;
for subj = 1:length(subjects)
eval([' tmp = ' [[['all_' cond{:}] '{' num2str(subj) '}']]]')
eval(['data_' num2str(i) ' = tmp']);
i = i + 1;
end
cfg.keepindividual = 'no';
cfg.parameter = 'avg';
% In this following line you should write as many data_X as
% subjects that you are including in the GA
eval(['GA_' cond{:} '_EPR = ft_timelockgrandaverage(cfg,data_1,data_2,data_3,data_4,data_5,data_6,data_7,data_8,data_9,data_10,data_11, data_12, data_13, data_14, data_15, data_16,data_17,data_18, data_19, data_20, data_21, data_22, data_23)']);
eval(['save(''' all_subs_folder 'GA_' cond{:} '_EPR'',''GA_' cond{:} '_EPR'')']);
eval(['clear(''GA_' cond{:} '_EPR'')']);
end
%% ===============================================
%% CLUSTER BASED PERMUTATION
%% ==============================================
nsubj = 23;
% --------------------------------------------------------------------------
% MAIN COMPARISONS : ENCODING
[stat_eA_vs_eMA_2T] = clusterStatistics_nadia(all_eA_2T, all_eMA_2T, nsubj)
[stat_eA_vs_eMA_all] = clusterStatistics_nadia(all_eA, all_eMA, nsubj);
save([all_subs_folder 'stat_eA_vs_eMA_2T'], 'stat_eA_vs_eMA_2T');
save([all_subs_folder 'stat_eA_vs_eMA_all'], 'stat_eA_vs_eMA_all');
% INTERACTIONS
[stat_interaction_encoding] = clusterStatistics_nadia(all_tAenc_R_2_tAenc_F_2, all_tMAenc_R_2_tMAenc_F_2, nsubj);
save([all_subs_folder 'stat_interaction_encoding'], 'stat_interaction_encoding');
% MAIN EFFECTS AT ENCODING
nsubj = length(subjects) * 2
stat_ME_memory_at_enc = clusterStatistics_nadia(all_enc_R_2ME, all_enc_F_2ME, nsubj);
stat_ME_sound_at_enc = clusterStatistics_nadia(all_tAenc_2ME, all_tMAenc_2ME, nsubj);
save([all_subs_folder 'stat_ME_memory_at_enc'], 'stat_ME_memory_at_enc');
save([all_subs_folder 'stat_ME_sound_at_enc'], 'stat_ME_sound_at_enc');
%% ===========================================
%% PLOT
%% ===========================================
cd(all_subs_folder)
files = dir('*EPR.mat');
tables = {};
for i = 1:length(files)
load(files(i).name);
end
cd(analysis_path)
enc = figure;
legnames = {'Motor-auditory', 'Auditory-only', 'Difference'}
titl = 'Encoding'
% Find where was the significant effect
time = linspace(min(GA_eMA_2T_EPR.time), max(GA_eMA_2T_EPR.time), numel(GA_eMA_2T_EPR.time));
significant_effect = time(find(stat_eA_vs_eMA_2T.mask == 1));
significant_time_window = [significant_effect(1) significant_effect(end)]
step_2_2_a_plotsEvoked(GA_eMA_2T_EPR, GA_eA_2T_EPR, GA_eA_2T_eMA_2T_EPR, 0, stat_eA_vs_eMA_2T, 0, legnames, titl, 0.1, 1, 1, 0)
cd(all_subs_folder)
saveas(enc, 'encoding_2T.fig');
%% ===========================================
%% SAVE PEAKS
%% ===========================================
%% Extract peak for each participant and condition in the window 0 to 1s post stimulus. Take latency as well
matrix_peaks = {};
conds = {'eA_2T_eMA_2T', 'eA_2T' 'eMA_2T' 'eM_2T'}
for cond = conds
load([all_subs_folder 'GA_' cond{:} '_all'])
for sub = 1:length(subjects)
eval([' tmp = ' [[['all_' cond{:}] '{' num2str(sub) '}']]]')
dummy = find(tmp.time >= -0.18 & tmp.time <= 1.23); % take samples after stim onset up to 1 s poststimulus
maxpupil = max(tmp.avg(dummy));
peak_latency = find(tmp.avg == maxpupil);
eval(['matrix_peaks' '{' num2str(sub) '}.subject' '= subjects(sub)']');
eval([['matrix_peaks' '{' num2str(sub) '}.' cond{:} 'peak'] '= maxpupil ']');
eval([['matrix_peaks' '{' num2str(sub) '}.' cond{:} 'latency'] '= peak_latency']');
end
end
cd(all_subs_folder)
matrix_peaks1 = cell2mat(matrix_peaks)
writetable(struct2table(matrix_peaks1), 'Peaks082021.xlsx')
end