forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
key.py
552 lines (484 loc) · 20.1 KB
/
key.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# Copyright (c) 2019-2020 Pieter Wuille
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test-only secp256k1 elliptic curve implementation
WARNING: This code is slow, uses bad randomness, does not properly protect
keys, and is trivially vulnerable to side channel attacks. Do not use for
anything but tests."""
import csv
import hashlib
import os
import random
import sys
import unittest
from .util import modinv
def TaggedHash(tag, data):
ss = hashlib.sha256(tag.encode('utf-8')).digest()
ss += ss
ss += data
return hashlib.sha256(ss).digest()
def xor_bytes(b0, b1):
return bytes(x ^ y for (x, y) in zip(b0, b1))
def jacobi_symbol(n, k):
"""Compute the Jacobi symbol of n modulo k
See http://en.wikipedia.org/wiki/Jacobi_symbol
For our application k is always prime, so this is the same as the Legendre symbol."""
assert k > 0 and k & 1, "jacobi symbol is only defined for positive odd k"
n %= k
t = 0
while n != 0:
while n & 1 == 0:
n >>= 1
r = k & 7
t ^= (r == 3 or r == 5)
n, k = k, n
t ^= (n & k & 3 == 3)
n = n % k
if k == 1:
return -1 if t else 1
return 0
def modsqrt(a, p):
"""Compute the square root of a modulo p when p % 4 = 3.
The Tonelli-Shanks algorithm can be used. See https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm
Limiting this function to only work for p % 4 = 3 means we don't need to
iterate through the loop. The highest n such that p - 1 = 2^n Q with Q odd
is n = 1. Therefore Q = (p-1)/2 and sqrt = a^((Q+1)/2) = a^((p+1)/4)
secp256k1's is defined over field of size 2**256 - 2**32 - 977, which is 3 mod 4.
"""
if p % 4 != 3:
raise NotImplementedError("modsqrt only implemented for p % 4 = 3")
sqrt = pow(a, (p + 1)//4, p)
if pow(sqrt, 2, p) == a % p:
return sqrt
return None
class EllipticCurve:
def __init__(self, p, a, b):
"""Initialize elliptic curve y^2 = x^3 + a*x + b over GF(p)."""
self.p = p
self.a = a % p
self.b = b % p
def affine(self, p1):
"""Convert a Jacobian point tuple p1 to affine form, or None if at infinity.
An affine point is represented as the Jacobian (x, y, 1)"""
x1, y1, z1 = p1
if z1 == 0:
return None
inv = modinv(z1, self.p)
inv_2 = (inv**2) % self.p
inv_3 = (inv_2 * inv) % self.p
return ((inv_2 * x1) % self.p, (inv_3 * y1) % self.p, 1)
def has_even_y(self, p1):
"""Whether the point p1 has an even Y coordinate when expressed in affine coordinates."""
return not (p1[2] == 0 or self.affine(p1)[1] & 1)
def negate(self, p1):
"""Negate a Jacobian point tuple p1."""
x1, y1, z1 = p1
return (x1, (self.p - y1) % self.p, z1)
def on_curve(self, p1):
"""Determine whether a Jacobian tuple p is on the curve (and not infinity)"""
x1, y1, z1 = p1
z2 = pow(z1, 2, self.p)
z4 = pow(z2, 2, self.p)
return z1 != 0 and (pow(x1, 3, self.p) + self.a * x1 * z4 + self.b * z2 * z4 - pow(y1, 2, self.p)) % self.p == 0
def is_x_coord(self, x):
"""Test whether x is a valid X coordinate on the curve."""
x_3 = pow(x, 3, self.p)
return jacobi_symbol(x_3 + self.a * x + self.b, self.p) != -1
def lift_x(self, x):
"""Given an X coordinate on the curve, return a corresponding affine point for which the Y coordinate is even."""
x_3 = pow(x, 3, self.p)
v = x_3 + self.a * x + self.b
y = modsqrt(v, self.p)
if y is None:
return None
return (x, self.p - y if y & 1 else y, 1)
def double(self, p1):
"""Double a Jacobian tuple p1
See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Doubling"""
x1, y1, z1 = p1
if z1 == 0:
return (0, 1, 0)
y1_2 = (y1**2) % self.p
y1_4 = (y1_2**2) % self.p
x1_2 = (x1**2) % self.p
s = (4*x1*y1_2) % self.p
m = 3*x1_2
if self.a:
m += self.a * pow(z1, 4, self.p)
m = m % self.p
x2 = (m**2 - 2*s) % self.p
y2 = (m*(s - x2) - 8*y1_4) % self.p
z2 = (2*y1*z1) % self.p
return (x2, y2, z2)
def add_mixed(self, p1, p2):
"""Add a Jacobian tuple p1 and an affine tuple p2
See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Addition (with affine point)"""
x1, y1, z1 = p1
x2, y2, z2 = p2
assert(z2 == 1)
# Adding to the point at infinity is a no-op
if z1 == 0:
return p2
z1_2 = (z1**2) % self.p
z1_3 = (z1_2 * z1) % self.p
u2 = (x2 * z1_2) % self.p
s2 = (y2 * z1_3) % self.p
if x1 == u2:
if (y1 != s2):
# p1 and p2 are inverses. Return the point at infinity.
return (0, 1, 0)
# p1 == p2. The formulas below fail when the two points are equal.
return self.double(p1)
h = u2 - x1
r = s2 - y1
h_2 = (h**2) % self.p
h_3 = (h_2 * h) % self.p
u1_h_2 = (x1 * h_2) % self.p
x3 = (r**2 - h_3 - 2*u1_h_2) % self.p
y3 = (r*(u1_h_2 - x3) - y1*h_3) % self.p
z3 = (h*z1) % self.p
return (x3, y3, z3)
def add(self, p1, p2):
"""Add two Jacobian tuples p1 and p2
See https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates - Point Addition"""
x1, y1, z1 = p1
x2, y2, z2 = p2
# Adding the point at infinity is a no-op
if z1 == 0:
return p2
if z2 == 0:
return p1
# Adding an Affine to a Jacobian is more efficient since we save field multiplications and squarings when z = 1
if z1 == 1:
return self.add_mixed(p2, p1)
if z2 == 1:
return self.add_mixed(p1, p2)
z1_2 = (z1**2) % self.p
z1_3 = (z1_2 * z1) % self.p
z2_2 = (z2**2) % self.p
z2_3 = (z2_2 * z2) % self.p
u1 = (x1 * z2_2) % self.p
u2 = (x2 * z1_2) % self.p
s1 = (y1 * z2_3) % self.p
s2 = (y2 * z1_3) % self.p
if u1 == u2:
if (s1 != s2):
# p1 and p2 are inverses. Return the point at infinity.
return (0, 1, 0)
# p1 == p2. The formulas below fail when the two points are equal.
return self.double(p1)
h = u2 - u1
r = s2 - s1
h_2 = (h**2) % self.p
h_3 = (h_2 * h) % self.p
u1_h_2 = (u1 * h_2) % self.p
x3 = (r**2 - h_3 - 2*u1_h_2) % self.p
y3 = (r*(u1_h_2 - x3) - s1*h_3) % self.p
z3 = (h*z1*z2) % self.p
return (x3, y3, z3)
def mul(self, ps):
"""Compute a (multi) point multiplication
ps is a list of (Jacobian tuple, scalar) pairs.
"""
r = (0, 1, 0)
for i in range(255, -1, -1):
r = self.double(r)
for (p, n) in ps:
if ((n >> i) & 1):
r = self.add(r, p)
return r
SECP256K1_FIELD_SIZE = 2**256 - 2**32 - 977
SECP256K1 = EllipticCurve(SECP256K1_FIELD_SIZE, 0, 7)
SECP256K1_G = (0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798, 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8, 1)
SECP256K1_ORDER = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
SECP256K1_ORDER_HALF = SECP256K1_ORDER // 2
class ECPubKey():
"""A secp256k1 public key"""
def __init__(self):
"""Construct an uninitialized public key"""
self.valid = False
def set(self, data):
"""Construct a public key from a serialization in compressed or uncompressed format"""
if (len(data) == 65 and data[0] == 0x04):
p = (int.from_bytes(data[1:33], 'big'), int.from_bytes(data[33:65], 'big'), 1)
self.valid = SECP256K1.on_curve(p)
if self.valid:
self.p = p
self.compressed = False
elif (len(data) == 33 and (data[0] == 0x02 or data[0] == 0x03)):
x = int.from_bytes(data[1:33], 'big')
if SECP256K1.is_x_coord(x):
p = SECP256K1.lift_x(x)
# Make the Y coordinate odd if required (lift_x always produces
# a point with an even Y coordinate).
if data[0] & 1:
p = SECP256K1.negate(p)
self.p = p
self.valid = True
self.compressed = True
else:
self.valid = False
else:
self.valid = False
@property
def is_compressed(self):
return self.compressed
@property
def is_valid(self):
return self.valid
def get_bytes(self):
assert(self.valid)
p = SECP256K1.affine(self.p)
if p is None:
return None
if self.compressed:
return bytes([0x02 + (p[1] & 1)]) + p[0].to_bytes(32, 'big')
else:
return bytes([0x04]) + p[0].to_bytes(32, 'big') + p[1].to_bytes(32, 'big')
def verify_ecdsa(self, sig, msg, low_s=True):
"""Verify a strictly DER-encoded ECDSA signature against this pubkey.
See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the
ECDSA verifier algorithm"""
assert(self.valid)
# Extract r and s from the DER formatted signature. Return false for
# any DER encoding errors.
if (sig[1] + 2 != len(sig)):
return False
if (len(sig) < 4):
return False
if (sig[0] != 0x30):
return False
if (sig[2] != 0x02):
return False
rlen = sig[3]
if (len(sig) < 6 + rlen):
return False
if rlen < 1 or rlen > 33:
return False
if sig[4] >= 0x80:
return False
if (rlen > 1 and (sig[4] == 0) and not (sig[5] & 0x80)):
return False
r = int.from_bytes(sig[4:4+rlen], 'big')
if (sig[4+rlen] != 0x02):
return False
slen = sig[5+rlen]
if slen < 1 or slen > 33:
return False
if (len(sig) != 6 + rlen + slen):
return False
if sig[6+rlen] >= 0x80:
return False
if (slen > 1 and (sig[6+rlen] == 0) and not (sig[7+rlen] & 0x80)):
return False
s = int.from_bytes(sig[6+rlen:6+rlen+slen], 'big')
# Verify that r and s are within the group order
if r < 1 or s < 1 or r >= SECP256K1_ORDER or s >= SECP256K1_ORDER:
return False
if low_s and s >= SECP256K1_ORDER_HALF:
return False
z = int.from_bytes(msg, 'big')
# Run verifier algorithm on r, s
w = modinv(s, SECP256K1_ORDER)
u1 = z*w % SECP256K1_ORDER
u2 = r*w % SECP256K1_ORDER
R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, u1), (self.p, u2)]))
if R is None or R[0] != r:
return False
return True
def generate_privkey():
"""Generate a valid random 32-byte private key."""
return random.randrange(1, SECP256K1_ORDER).to_bytes(32, 'big')
class ECKey():
"""A secp256k1 private key"""
def __init__(self):
self.valid = False
def set(self, secret, compressed):
"""Construct a private key object with given 32-byte secret and compressed flag."""
assert(len(secret) == 32)
secret = int.from_bytes(secret, 'big')
self.valid = (secret > 0 and secret < SECP256K1_ORDER)
if self.valid:
self.secret = secret
self.compressed = compressed
def generate(self, compressed=True):
"""Generate a random private key (compressed or uncompressed)."""
self.set(generate_privkey(), compressed)
def get_bytes(self):
"""Retrieve the 32-byte representation of this key."""
assert(self.valid)
return self.secret.to_bytes(32, 'big')
@property
def is_valid(self):
return self.valid
@property
def is_compressed(self):
return self.compressed
def get_pubkey(self):
"""Compute an ECPubKey object for this secret key."""
assert(self.valid)
ret = ECPubKey()
p = SECP256K1.mul([(SECP256K1_G, self.secret)])
ret.p = p
ret.valid = True
ret.compressed = self.compressed
return ret
def sign_ecdsa(self, msg, low_s=True):
"""Construct a DER-encoded ECDSA signature with this key.
See https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm for the
ECDSA signer algorithm."""
assert(self.valid)
z = int.from_bytes(msg, 'big')
# Note: no RFC6979, but a simple random nonce (some tests rely on distinct transactions for the same operation)
k = random.randrange(1, SECP256K1_ORDER)
R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, k)]))
r = R[0] % SECP256K1_ORDER
s = (modinv(k, SECP256K1_ORDER) * (z + self.secret * r)) % SECP256K1_ORDER
if low_s and s > SECP256K1_ORDER_HALF:
s = SECP256K1_ORDER - s
# Represent in DER format. The byte representations of r and s have
# length rounded up (255 bits becomes 32 bytes and 256 bits becomes 33
# bytes).
rb = r.to_bytes((r.bit_length() + 8) // 8, 'big')
sb = s.to_bytes((s.bit_length() + 8) // 8, 'big')
return b'\x30' + bytes([4 + len(rb) + len(sb), 2, len(rb)]) + rb + bytes([2, len(sb)]) + sb
def compute_xonly_pubkey(key):
"""Compute an x-only (32 byte) public key from a (32 byte) private key.
This also returns whether the resulting public key was negated.
"""
assert len(key) == 32
x = int.from_bytes(key, 'big')
if x == 0 or x >= SECP256K1_ORDER:
return (None, None)
P = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, x)]))
return (P[0].to_bytes(32, 'big'), not SECP256K1.has_even_y(P))
def tweak_add_privkey(key, tweak):
"""Tweak a private key (after negating it if needed)."""
assert len(key) == 32
assert len(tweak) == 32
x = int.from_bytes(key, 'big')
if x == 0 or x >= SECP256K1_ORDER:
return None
if not SECP256K1.has_even_y(SECP256K1.mul([(SECP256K1_G, x)])):
x = SECP256K1_ORDER - x
t = int.from_bytes(tweak, 'big')
if t >= SECP256K1_ORDER:
return None
x = (x + t) % SECP256K1_ORDER
if x == 0:
return None
return x.to_bytes(32, 'big')
def tweak_add_pubkey(key, tweak):
"""Tweak a public key and return whether the result had to be negated."""
assert len(key) == 32
assert len(tweak) == 32
x_coord = int.from_bytes(key, 'big')
if x_coord >= SECP256K1_FIELD_SIZE:
return None
P = SECP256K1.lift_x(x_coord)
if P is None:
return None
t = int.from_bytes(tweak, 'big')
if t >= SECP256K1_ORDER:
return None
Q = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, t), (P, 1)]))
if Q is None:
return None
return (Q[0].to_bytes(32, 'big'), not SECP256K1.has_even_y(Q))
def verify_schnorr(key, sig, msg):
"""Verify a Schnorr signature (see BIP 340).
- key is a 32-byte xonly pubkey (computed using compute_xonly_pubkey).
- sig is a 64-byte Schnorr signature
- msg is a 32-byte message
"""
assert len(key) == 32
assert len(msg) == 32
assert len(sig) == 64
x_coord = int.from_bytes(key, 'big')
if x_coord == 0 or x_coord >= SECP256K1_FIELD_SIZE:
return False
P = SECP256K1.lift_x(x_coord)
if P is None:
return False
r = int.from_bytes(sig[0:32], 'big')
if r >= SECP256K1_FIELD_SIZE:
return False
s = int.from_bytes(sig[32:64], 'big')
if s >= SECP256K1_ORDER:
return False
e = int.from_bytes(TaggedHash("BIP0340/challenge", sig[0:32] + key + msg), 'big') % SECP256K1_ORDER
R = SECP256K1.mul([(SECP256K1_G, s), (P, SECP256K1_ORDER - e)])
if not SECP256K1.has_even_y(R):
return False
if ((r * R[2] * R[2]) % SECP256K1_FIELD_SIZE) != R[0]:
return False
return True
def sign_schnorr(key, msg, aux=None, flip_p=False, flip_r=False):
"""Create a Schnorr signature (see BIP 340)."""
if aux is None:
aux = bytes(32)
assert len(key) == 32
assert len(msg) == 32
assert len(aux) == 32
sec = int.from_bytes(key, 'big')
if sec == 0 or sec >= SECP256K1_ORDER:
return None
P = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, sec)]))
if SECP256K1.has_even_y(P) == flip_p:
sec = SECP256K1_ORDER - sec
t = (sec ^ int.from_bytes(TaggedHash("BIP0340/aux", aux), 'big')).to_bytes(32, 'big')
kp = int.from_bytes(TaggedHash("BIP0340/nonce", t + P[0].to_bytes(32, 'big') + msg), 'big') % SECP256K1_ORDER
assert kp != 0
R = SECP256K1.affine(SECP256K1.mul([(SECP256K1_G, kp)]))
k = kp if SECP256K1.has_even_y(R) != flip_r else SECP256K1_ORDER - kp
e = int.from_bytes(TaggedHash("BIP0340/challenge", R[0].to_bytes(32, 'big') + P[0].to_bytes(32, 'big') + msg), 'big') % SECP256K1_ORDER
return R[0].to_bytes(32, 'big') + ((k + e * sec) % SECP256K1_ORDER).to_bytes(32, 'big')
class TestFrameworkKey(unittest.TestCase):
def test_schnorr(self):
"""Test the Python Schnorr implementation."""
byte_arrays = [generate_privkey() for _ in range(3)] + [v.to_bytes(32, 'big') for v in [0, SECP256K1_ORDER - 1, SECP256K1_ORDER, 2**256 - 1]]
keys = {}
for privkey in byte_arrays: # build array of key/pubkey pairs
pubkey, _ = compute_xonly_pubkey(privkey)
if pubkey is not None:
keys[privkey] = pubkey
for msg in byte_arrays: # test every combination of message, signing key, verification key
for sign_privkey, sign_pubkey in keys.items():
sig = sign_schnorr(sign_privkey, msg)
for verify_privkey, verify_pubkey in keys.items():
if verify_privkey == sign_privkey:
self.assertTrue(verify_schnorr(verify_pubkey, sig, msg))
sig = list(sig)
sig[random.randrange(64)] ^= (1 << (random.randrange(8))) # damaging signature should break things
sig = bytes(sig)
self.assertFalse(verify_schnorr(verify_pubkey, sig, msg))
def test_schnorr_testvectors(self):
"""Implement the BIP340 test vectors (read from bip340_test_vectors.csv)."""
num_tests = 0
with open(os.path.join(sys.path[0], 'test_framework', 'bip340_test_vectors.csv'), newline='', encoding='utf8') as csvfile:
reader = csv.reader(csvfile)
next(reader)
for row in reader:
(i_str, seckey_hex, pubkey_hex, aux_rand_hex, msg_hex, sig_hex, result_str, comment) = row
i = int(i_str)
pubkey = bytes.fromhex(pubkey_hex)
msg = bytes.fromhex(msg_hex)
sig = bytes.fromhex(sig_hex)
result = result_str == 'TRUE'
if seckey_hex != '':
seckey = bytes.fromhex(seckey_hex)
pubkey_actual = compute_xonly_pubkey(seckey)[0]
self.assertEqual(pubkey.hex(), pubkey_actual.hex(), "BIP340 test vector %i (%s): pubkey mismatch" % (i, comment))
aux_rand = bytes.fromhex(aux_rand_hex)
try:
sig_actual = sign_schnorr(seckey, msg, aux_rand)
self.assertEqual(sig.hex(), sig_actual.hex(), "BIP340 test vector %i (%s): sig mismatch" % (i, comment))
except RuntimeError as e:
self.fail("BIP340 test vector %i (%s): signing raised exception %s" % (i, comment, e))
result_actual = verify_schnorr(pubkey, sig, msg)
if result:
self.assertEqual(result, result_actual, "BIP340 test vector %i (%s): verification failed" % (i, comment))
else:
self.assertEqual(result, result_actual, "BIP340 test vector %i (%s): verification succeeded unexpectedly" % (i, comment))
num_tests += 1
self.assertTrue(num_tests >= 15) # expect at least 15 test vectors